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What you get

1. Principled definition of relations models for CBPV

2. Lots of applications and examples, via a lifting theorem


eg. effect simulation, lifting, syntactic definition, Lafont argument, …  

3. General theory encompassing STLC,  and CBPV 

⊤⊤-

λml
simply-typed 

-calculusλ
monadic 

metalanguage
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a predicate  for each type …RA ⊆ [[A]] A
…determined inductively at higher types by 


a logical relations condition

A logical relation  consists of:R

every program is in the relation:  for any closed  [[P]] ∈ RA P : A
Basic Lemma:

so long as this holds for the basic constants

Milner, Plotkin, ….
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(X, R) ⇒ (Y, S) := (X ⇒ Y, R ⊃ S)
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Why?
semantic models are more subtle: 
uses enriched categories
want to say ‘fibration preserving model structure’, 
but what is the right notion of fibration?

…but not obvious for CBPV
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