Logical relations for CBPV models, via internal fibrations in a 2-category LICS 2025, Singapore These slides available at philipsaville.co.uk

Pedro H. Azevedo de Amorim (University of Oxford, UK) Satoshi Kura (Waseda University, Japan) Philip Saville (University of Sussex, UK)

the first complete denotational account of logical relations for CBPV

the first complete denotational account of logical relations for CBPV

Levy's call-by-push-value

2025 Alonzo Church prize winner!

= an effectful language with fine control over when effects happen

subsumes both CBV and CBN

the first complete denotational account of logical relations for CBPV

a classic proof technique for logics and programming languages

"operational": termination, normalisation, ...

"denotational": definability, simulation, ...

= characterising the definable morphisms in a model = how is $\llbracket P \rrbracket^{\mathscr{M}}$ related to $\llbracket P \rrbracket^{\mathscr{N}}$?

Levy's call-by-push-value

2025 Alonzo Church prize winner!

= an effectful language with fine control over when effects happen

subsumes both CBV and CBN

the first complete denotational account of logical relations for CBPV

a classic proof technique for logics and programming languages

"operational": termination, normalisation, ...

"denotational": definability, simulation, ...

= characterising the definable morphisms in a model = how is $\llbracket P \rrbracket^{\mathscr{M}}$ related to $\llbracket P \rrbracket^{\mathscr{N}}$?

logical relations as a way to build denotational models

related work: Kammar (2014), McDermott (2020), ...

other approaches: Levy (2012), Goncharov—Tsampas—Urbat (2025), ...

Levy's call-by-push-value

2025 Alonzo Church prize winner!

= an effectful language with fine control over when effects happen

subsumes both CBV and CBN

What you get

1. Principled definition of relations models for CBPV 2. Lots of applications and examples, via a lifting theorem eg. effect simulation, TT-lifting, syntactic definition, Lafont argument, ...

3. General theory encompassing STLC, λ_{ml} and CBPV

simply-typed λ -calculus

LOGICAL Relations (in their simplest form) Milner, Plotkin,

A logical relation R consists of:

...determined inductively at higher types by a logical relations condition

a predicate $R_A \subseteq [A]$ for each type A...

LOGICAl relations (in their simplest form) Milner, Plotkin,

A logical relation R consists of:

a logical relations condition

Eq. logical relations condition for \rightarrow in STLC: $f \in R_{A \to B} \subseteq [[A] \Rightarrow [[B]]$ iff $f(x) \in R_B$ whenever $x \in R_A$

a predicate $R_A \subseteq [A]$ for each type A...

...determined inductively at higher types by

LOGICAL Relations (in their simplest form) Milner, Plotkin,

A logical relation R consists of:

...determined inductively at higher types by a logical relations condition

Basic Lemma:

a predicate $R_A \subseteq [[A]]$ for each type A...

every program is in the relation: $\llbracket P \rrbracket \in R_A$ for any closed P : A

so long as this holds for the basic constants

semantic model

objects: $(X \in \mathbf{Set}, R \subseteq X)$ maps: functions preserving the predicate

semantic model

Pred

p Set

Pred

p

Set

objects: $(X \in \mathbf{Set}, R \subseteq X)$ maps: functions preserving the predicate

semantic model

Pred is cartesian closed:

$$(X, R) \Rightarrow (Y, S) := (X \Rightarrow Y, R \supset S)$$

 $f \in R \supset S$ iff $f(x) \in S$ whenever $x \in S$

 $f \in \llbracket A \to B \rrbracket^{\operatorname{Pred}}$ iff f preserves the predicate on $\llbracket A \rrbracket^{\operatorname{Set}}$

Pred

p

Set

objects: $(X \in \mathbf{Set}, R \subseteq X)$ maps: functions preserving the predicate

semantic model

Pred is cartesian closed:

 $(X, R) \Rightarrow (Y, S) := (X \Rightarrow Y, R \supset S)$ $f \in R \supset S \quad \text{iff} \quad f(x) \in S \text{ whenever } x \in R$

 $f \in \llbracket A \to B \rrbracket^{\operatorname{Pred}}$ iff f preserves the predicate on $\llbracket A \rrbracket^{\operatorname{Set}}$

CC-structure encodes the logical relations condition!

Pred

p

Set

objects: $(X \in \mathbf{Set}, R \subseteq X)$ maps: functions preserving the predicate

> forgetful functor *p* strictly preserves CC-structure

> > semantic model

Pred is cartesian closed:

 $(X, R) \Rightarrow (Y, S) := (X \Rightarrow Y, R \supset S)$ $f \in R \supset S$ iff $f(x) \in S$ whenever $x \in R$

 $f \in \llbracket A \to B \rrbracket^{\operatorname{Pred}}$ iff f preserves the predicate on $\llbracket A \rrbracket^{\operatorname{Set}}$

CC-structure encodes the logical relations condition!

Pred

p

Set

objects: $(X \in \mathbf{Set}, R \subseteq X)$ maps: functions preserving the predicate

> forgetful functor *p* strictly preserves CC-structure

> > semantic model

Basic Lemma holds automatically:

 $p(\llbracket P \rrbracket^{\operatorname{Pred}}) = \llbracket P \rrbracket^{\operatorname{Set}}$

Pred is cartesian closed:

 $(X, R) \Rightarrow (Y, S) := (X \Rightarrow Y, R \supset S)$ $f \in R \supset S$ iff $f(x) \in S$ whenever $x \in R$

 $f \in \llbracket A \to B \rrbracket^{\operatorname{Pred}}$ iff f preserves the predicate on $\llbracket A \rrbracket^{\operatorname{Set}}$

CC-structure encodes the logical relations condition!

Logical relations = relations models Hermida, Jacobs, Katsumata,

Logical relations = relations models Hermida, Jacobs, Katsumata,

semantic model

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Hermida, Jacobs, Katsumata,

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Hermida, Jacobs, Katsumata,

model-structure encodes the logical relations condition!

p

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Basic Lemma holds automatically:

Hermida, Jacobs, Katsumata,

model-structure encodes the logical relations condition!

p

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Basic Lemma holds automatically:

Hermida, Jacobs, Katsumata,

model-structure encodes the logical relations condition!

'relations' = p is a fibration

p

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Basic Lemma holds automatically:

Hermida, Jacobs, Katsumata,

model-structure encodes the logical relations condition!

'relations' = p is a fibration

Logical relations = fibrations for logical relations

p

'relations model'

forgetful functor *p* strictly preserves model-structure

semantic model

Basic Lemma holds automatically:

Hermida, Jacobs, Katsumata,

model-structure encodes the logical relations condition!

'relations' = p is a fibration

Logical relations \simeq relations models \cong fibrations for logical relations

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

semantic model

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

semantic model

fibration for logical relations: fibration strictly preserving model structure

abstract notion of 'relation'

ie. p a fibration for logical relations

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

semantic model

fibration for logical relations: fibration strictly preserving model structure

abstract notion of 'relation' ie. p a fibration for

logical relations

weak map of models

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

lifting theorem: universal choice of model 'glueing' objects of \mathcal{M} to 'relations' in \mathscr{E}

semantic model

fibration for logical relations: fibration strictly preserving model structure

abstract notion of 'relation' ie. *p* a fibration for

logical relations

weak map of models

eg. effect simulation, TT-lifting, Kripke relations of varying arity, ...

lifting theorem:

universal choice of model 'glueing' objects of \mathscr{M} to 'relations' in \mathscr{E}

fibration for logical relations: fibration strictly preserving model structure

abstract notion of 'relation' ie. p a fibration for

logical relations

weak map of models

simply-typed λ -calculus

computational This works for STLC and λ_{m1} and λ_{c} λ -calculus eg. Katsumata, McDermott–Kammar, Goubault-Larrecq et al, ...

simply-typed λ-calculus

This works for STLC and λ_{ml} and λ_c λ_{c} λ_{c} computational λ_{ml} and λ_c λ_{c} calculus

simply-typed λ -calculus

This works for STLC and λ_{m1} and λ_{c} computational λ -calculus ...but not obvious for CBPV

Why? semantic models are more subtle: uses enriched categories want to say 'fibration preserving model structure', but what is the right notion of fibration?

What we do:

turn to 2-category theory = a language for structures on categories

What we do: turn to 2-category theory = a language for structures on categories

Existing fibrations for logical relations = fibrations internal to 2-categories of models

What we do: turn to 2-category theory = a language for structures on categories

Existing fibrations for logical relations = fibrations internal to 2-categories of models

Construct a 2-category of CBPV models → fibration for logical relations := fibrations internal to this → key examples from the general theory eg. subobject, codomain, ...

What we do:

- Existing fibrations for logical relations = fibrations internal to 2-categories of models
- Construct a 2-category of CBPV models

turn to 2-category theory = a language for structures on categories

 \rightarrow fibration for logical relations := fibrations internal to this \rightarrow key examples from the general theory eg. subobject, codomain, ...

Prove a lifting theorem encompassing STLC, λ_{m1} and CBPV

What we do:

- Existing fibrations for logical relations = fibrations internal to 2-categories of models
- Construct a 2-category of CBPV models

turn to 2-category theory = a language for structures on categories

 \rightarrow fibration for logical relations := fibrations internal to this \rightarrow key examples from the general theory eg. subobject, codomain, ...

Prove a lifting theorem encompassing STLC, λ_{m1} and CBPV

turn to 2-category theory What we do: = a language for structures on categories

- Existing fibrations for logical relations = fibrations internal to 2-categories of models
- Construct a 2-category of CBPV models
- Get many new CBPV models eg. effect simulation, TT-lifting, syntactic defn, conservativity,...

 \rightarrow fibration for logical relations := fibrations internal to this \rightarrow key examples from the general theory eg. subobject, codomain, ...

Prove a lifting theorem encompassing STLC, λ_{m1} and CBPV

A complete denotational account of logical relations for CBPV

A complete denotational account of logical relations for CBPV

1. Principled definition of relations models for CBPV

- 2. Lots of applications and examples, via a lifting theorem eg. effect simulation, TT-lifting, syntactic definition, Lafont argument, ...

3. General theory encompassing STLC, λ_{m1} and CBPV

simply-typed λ -calculus

A complete denotational account of logical relations for CBPV

1. Principled definition of relations models for CBPV

email me: p.saville@sussex.ac.uk arxiv link: 10.48550/arXiv.2505.14482 these slides available at philipsaville.co.uk

- 2. Lots of applications and examples, via a lifting theorem eg. effect simulation, TT-lifting, syntactic definition, Lafont argument, ...

3. General theory encompassing STLC, λ_{m1} and CBPV

simply-typed λ -calculus

