Diffeological spaces as a model
for differentiable programs

A tutorial

Philip Saville, University of Oxford
these slides available at philipsaville.co.uk

http://philipsaville.co.uk

(1) What questions does denotational semantics study?
(2) Why are cartesian closed categories so important?
(3) Where do diffeological spaces come in?

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

gets interesting when programs have effects
= Interaction with the world

When are programs interchangeable?

example 1

flips a coin with bias p € [0,1]

/

let b =1lip(p); more efficient
return b; not correct!

return (heads)

let b = flip(p);

if b == heads: more efficient
then return (heads); correct!
else return (heads);

> return (heads)

When are programs interchangeable?

example 2

fun doublei1(n): doublei1(n)
set_memory location; := n; memory memory
return (

location1 :=0 locationt :=n

get_memory (location;)
+ get_memory (location;)

)- locationk := 0 locationk:=0
9

location2:=0 location2:=0

fun doublea(n): doublea(n)
set_memory location; :=n
. memory memory

set_memory locationg :=n

I’etuI’n (location :=0 locations :=n

. location2:=0 locationz := n

get_memory (location;)
+ get_memOI’y (].OC&tiOD.g) locationi := 0 locationi := 0

);

When are programs interchangeable?

example 2

doublei(n)

memory memory

location1 :=0 locationt := n

location2:=0 location2:=0

locationk :=0 locationk :=0

doubleza(n)

memory memory

location1 :=0 locationq :=n

location2:=0 locationz2 := n

locationk :=0 locationk :=0

equal as functions but not as programs!
~ we can observe a difference in behaviour

When are programs interchangeable?

example 2

doublei(n)

memory memory

location1 :=0 locationt := n

location2:=0 location2:=0

locationk :=0 locationk :=0

doubleza(n)

memory memory

location1 :=0 locationq :=n

location2:=0 locationz2 := n

locationk :=0 locationk :=0

equal as functions but not as programs!
~ we can observe a difference in behaviour

Vn . doublei1(n) = doublea(n)

When are programs interchangeable?

example 2

doublei(n)

memory memory

location1 :=0 locationt := n

location2:=0 location2:=0

locationk :=0 locationk :=0

doubleza(n)

memory memory

location1 :=0 locationq :=n

location2:=0 locationz2 := n

locationk :=0 locationk :=0

equal as functions but not as programs!
~ we can observe a difference in behaviour

Vn . doublei1(n) = doublea(n)

but can distinguish them by looking at memory:

doublei(R);
let n = get_memory locationsg;
ifn>0:

then return (false);

else return (true);

return (true); return (false);

When are programs interchangeable?

programs P and Q are observationally equivalent
If there’s no way to observe a difference in behaviour

any program €[P]| containing P gives a result
iff €[] gives the same result

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

10

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

observational equivalence
generally harder than

function equality
We aSk: / depends on the
. language’s features
(1) When are programs interchangeable®?

(2) How should we think about programs? I depends on how

programs run

11

Observational equivalence in the real world

how do you prove you’'re not Banksy?

A town councillor has resigned, blaming people who falsely accused him of
being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous" claims
were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the
work" of a councillor.

Mr Gannon has since made an "l am not Banksy" badge to avoid any confusion
and said he would now be returning to his former role of community artist.

He said the allegations meant people were "asking me to prove who | am not
and that's almost impossible to do".

https://www.bbc.co.uk/news/uk-wales-61552865

12

!
t

.r, .
ol B
_—rc)

- — . eo——

}
| {

S s <, 2 L

-

s [d N e 4 o4
.:.- -ty i L il
~ Gl 2 - ;--.,' e
e - ~ 'X - e D . - ‘.'d,-'w~

In the real world

Observational equivalence

how do you prove you’'re not Banksy?

A town councillor has resigned, blaming people who falsely accused him of
being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous” claims
were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the
work" of a councillor.

Mr Gannon has since made an "l am not Banksy" badge to avoid any confusion
and said he would now be returnlng to his former role of communlty artist.

He sald the allegatlons meant people were asklng me to prove who I am not

) /and that S almost |mp055|ble to do

https /WW bbc co uk/news/uk wales 61552865 o

13

Observational equivalence in the real world

how do you prove you’'re not Banksy?

A town councillor has resigned, blaming people who falsely accused him of
being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous” claims
were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the
work" of a councillor.

Mr Gannon has since made an "l am not Banksy" badge to avoid any confusion
and said he would now be returnlng to his former role of communlty artist.

He sald the allegatlons meant people were asklng me to prove who I am not

g ‘_‘. . '?_'-~ S
; 1 -“ ' s MRy -
< '2' “}-e - ,..., u.‘ﬂ s
hn ¥ "3‘* \,‘ i | M

) and that S almost |mp055|ble to do

https /ww bbc co uk/news/uk wales 61552865 o

If there’s no way to tell them apart, they must be the same!

14

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

observational equivalence
generally harder than

function equality
We aSk: / depends on the
. language’s features
(1) When are programs interchangeable®?

(2) How should we think about programs? I depends on how

programs run

15

How should we think about programs?

fun add(x, y):

return (x +y) a function NXN — N

How should we think about programs?

fun add(x, y):

return (x +y) a function NXN — N

fun divide(x, v): a function Zx Z_, — Q

return (x/ y) a function 7 x 7 — Q + {fail}

17

How should we think about programs?

fun add(x, y):

return (x +y) a function NXN — N

fun divide(x, v): a function Zx Z_, — Q

return (x/ y) a function 7 x 7 — Q + {fail}

fun print_and_return(x): a function N — {a,b, ...,z}* X N
print “hello”; x + (hello, x)

return x;

How should we think about programs?

fun add(x, y):

return (x +y) a function NXN — N

fun divide(x, v): a function Zx Z_, — Q

return (x/ y) a function 7 x 7 — Q + {fail}
fun print_and_return(x): a function N — {a,b, ...,z}* X N
print “hello”; x + (hello, x)
return Xx;
let b = flip(p); a probability distribution on

return b; {heads, tails }

19

How should we think about programs?

fun add(x, y):

return (x +y) a function NXN — N

fun divide(x, v): a function Zx Z_, — Q

return (x/ y) a function 7 x 7 — Q + {fail}

fun print_and_return(x): a function N — {a,b,...,z}* X N

print “heHO”; x + (hello, x)

return x;
let b = flip(p); a probability distribution on
return b; theads, tails}
normailise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3); some measurable function (?7?)

observe 0.45 from exponential(r)

return(x)

) 20

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

observational equivalence
generally harder than

function equality
We aSk: / depends on the
. language’s features
(1) When are programs interchangeable®?

(2) How should we think about programs? \ depends on how

programs run
/ need something beyond set-theoretic
functions to model richer features!
y

some kind

of function? uses ideas from:

- topology
- logic
- order theory

21

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable®?
(2) How should we think about programs?

The denotational semantics perspective:

(1) Assign every program P a meaning [| P]|
(2) Reason about equality of programs via their meaning
(3) The semantic model tells you what programs ‘really are’

22

Coming up next

1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming
4. Explain the interpretation in Diff

23

What is a program? |

steps_taken =0
while (steps_taken < 100) {
fib=nl +nd
nl =ngd
na = fib
steps_taken = steps_taken + 1

something modelled by a Turing machine

memory you can read
to & write from

moving CPU
011
OCamI, Haskell, readiwrite device %H
Standard ML,...
1101 (10|01
a kind of function —
\ fib0 =0
fibl=1

fib n=1fib (n-1) + fib (n-2)

So a functional programming language lets you
e form functions
* evaluate functions at arguments

24

How do we define functions?

function body

may not use x, eg f(x) = 3 _ _
| | A functional programming language lets you
may contain free variables, eg e form functions
J&x) =3y +x |
* evaluate functions at arguments

f)=x"+x"+1

bound variable

the x matters: if

g =3y’ +y*+1
h(y) =3x> +x% + 1

then f = g but 4 is a constant function

every other
variable is free

25

How do we define functions?

function body

A functional programming language lets you
e form functions

may not use x, eg f(x) = 3
may contain free variables, eg
J&x) =3y +x |
* evaluate functions at arguments

fx) =x" +x*+ 1

bound variable

evaluating = substituting for bound variable

the x matters: if

g(y) =3y’ +y*+1 3
h(y) =3x°> + x>+ 1

then f = g but 4 is a constant function

every other
variable is free

26

(x> 4+ x° + D[x — 3]
30+ 3241

How do we define functions?

function body

may not use x, eg f(x) = 3 _ _
| | A functional programming language lets you
may contain free variables, eg e form functions
J&x) =3y +x |
* evaluate functions at arguments

f(x) — X3 _|_ xz —|— 1 in R whenever x € |

| X €l
bound variable evaluating = substituting for bound variable

the x matters: if

o f3) = (x°+x*+ D[x — 3]

then f = g but & is a constant function 3 E L
every other 3 2
variable is free —I— —I—

27

How do we define functions?

function body

x> + x% + 1 is a program

(x —» x>+ x%* + 1) is a program

bound variable

every other
variable is free

A functional programming language lets you

e form functions
* evaluate functions at arguments

(x » x>+ x>+ 1)isaprogram 3 is a program

evaluating = substituting for bound variable

x> X +x2+1DB)~ 3 +3%2+1

(x — (x°

extensionality: f = (x |—>f(x))

Xq

D) ~ (x> x°

(x — x> + x% + 1)(3) is a program

How do we define functions?

the A-calculus
Ax . f(x) = (x > f(x))

function body

x> + x% + 1 is a program

Ax . x>+ x?+ 1 is a program

bound variable

every other
variable is free

A functional programming language lets you

e form functions
* evaluate functions at arguments

Ax . x>+ x° + 1 is a program 3 is a program

evaluating = substituting for bound variable

Ax. x>+ x>+ 1DB) ~ 3> +3%+1

(x — (x°

extensionality: f = (x |—>f(x))

Xq

D) ~ (x = x°

(Ax . x> 4+ x>+ 1)(3) is a program

How do we define functions?

the simply-typed A-calculus
Ax . f(x) = (x — f(x))

A functional programming language lets you
function body e form functions

X3 + xz _|_ 1 iS 3 program Of type R * evaluate functions at arguments

Ax . x>+ x* + 1is aprogram of type R — R

bound variable

every other
variable is free

Ax.x> 4+ x*+ lisaprogramof type R — R 3 is a program of type R

(Ax . x> + x* + 1)(3) is a program of type R

evaluating = substituting for bound variable
Ax. x>+ x>+ 1DB) ~ 3> +3%+1

extensionality: f = (x |—>f(x))
(x> P+ + D) ~ (x> xP+x7+ 1)

How do we define functions?

the simply-typed A-calculus
Ax . f(x) = (x > f(x))

A functional programming language lets you
function body e form functions

P is a program of type B x is a variable of type A + evaluate functions at arguments

abstraction

Ax . P is a program of type A — B

bound variable

every other
variable is free

P is a program of type A — B () is a program of type A

application

P(Q) is a program of type B

evaluating = substituting for bound variable
(Ax . P)(Q) ~4 Plx = Q]

extensionality: f = (x |—>f(x))

P ~, Ax . P(x)

31

How do we define functions?

the simply-typed A-calculus
Ax . f(x) = (x > f(x))

A functional programming language lets you
function body e form functions

P is a program of type B x is a variable of type A + evaluate functions at arguments

abstraction

Ax . P is a program of type A — B

bound variable

every other
variable is free

P is a program of type A — B () is a program of type A

application

P(Q) is a program of type B

evaluating = substituting for bound variable
(Ax . P)(Q) ~4 Plx = Q]

extensionality: f = (x |—>f(x))

P ~, Ax . P(x)

X is a variable of type A

X is a program of type A

32

How do we define functions?

the simply-typed A-calculus
Jx fx) = (x B f)

P : A — Bis aprogram O : Ais a program

X IS a variable

X IS a program

P(Q) : Bis a program

application

P : B is a program X : A is avariable

abstraction

Ax.P : A — Bisaprogram

evaluating = substituting for bound x extensionality
P(Q) ~ Plx = Q] b=y A P
= running the program f=(xrfw)

A functional programming language lets you

e form functions
e evaluate functions at arguments

33

How do we define functions?

the simply-typed A-calculus x is a variable P : Bis a program x : Ais avariable
Ax . f(x) = (x — f(x)) x is a program sbstracton— 2x . P : A — Bis a program
P:A — Bisa program Q - Ais a program evaluating = substituting for bound x extensionality
application P(Q) ~5 Plx = Q] P ~n Ax . P(x)

P(Q) : Bis a program

= running the program f=(xrfw)

A functional programming language lets you

e form functions
e evaluate functions at arguments

f:A—>B x:A

f(x): B
Ax . f(x):A—> B
M. Ax . f(x): (A > B) - (A - B)

eval :(A=>B)XA —>B
(f, x) = f(x)

viacurryingX - (A=>B)=2(XXA)—> B
34

How do we define functions?

the simply-typed A-calculus X is a variable P : Bis a program x : Ais a variable
Ax . f(x) = (x — f(x)) X is a program sbstaction— 2x . P : A — Bis a program
A functional programming language lets you
e form functions
P : A — Bis aprogram Q : Ais a program evaluating = substituting for bound x extensionality « evaluate functions at arguments
P(0Q) : Bis a program application PQ) = Pl O] Py 4. PO
| = running the program f=(xrf)

f:A—->B x:A
g.:.B—>C fx): B
g(f): C
Ax.g(fx):A—->C
M. Ax.g(fx):(A—>B)—> (A - C)
val: (A > B x A > B Ag .M. Ax.g(fx): (B—C)—> ((A—-> B)—> (A - O)

(f, x) = f(x)
comp: B=>C)X(A=>B) - A=>C)

viacurrying X - (A =>B) = (XXA)— B 35 (g, f) P gof

f:A—->B x:A
f(x): B
Ax . f(x):A—> B
M. Ax . f(x): (A > B) - (A - B)

Things we can’t do

the A-calculus
Ax . f(x) = (x — f(x))

P is a program

X IS a variable

X IS a program

(is a program

P(Q) is a program

application

P is a program |
abstraction

Ax.Pisa program extensionality: f = (X |—>f(3€))

P ~, AXx . P(x)

evaluating = substituting for bound variable

P(Q)“"ﬂP[XHQ]

= running the program

A functional programming language lets you

e form functions
e evaluate functions at arguments

Note there’s no restrictions on either rule!

fis a variable

fis a program

f(f) is a program

Af . f(f) is a program

Looping, recursion, ...

(3f F)) (G S)) ~ (3 F) [= G 1))
= (. £N) (2 -F)

Encode Peano arithmetic

L:= (. A . f(0)
2:= (A . 4. f(fx)

plus := (Am . An . Af . Ax .mf(nfx))

36

Adding primitives
the simply-typed A-calculus
Ax . f(x) = (x — f(x))

(n € N)
n : nat

true : bool false : bool

flip() : bool

37

A functional programming language lets you

e form functions
e evaluate functions at arguments

Adding primitives
the simply-typed A-calculus
Ax . f(x) = (x — f(x))

What about plus, if etc?

. plus : N XN — N
ne
n : nat if: 2XNXN — N

m ifi =1

true : bool false : bool i) = {n fi=0

flip() : bool

38

A functional programming language lets you

e form functions
e evaluate functions at arguments

the simply-typed A-calculus
Ax . f(x) = (x — f(x))

(n € N)
n : nat

true : bool false : bool

flip() : bool

Adding primitives

What about plus, if etc?

plus : N XN — N
if : 2XNXN — N

n ifi=0
m ifi =1

1f(i,n,m) = {

A functional programming language lets you

e form functions
e evaluate functions at arguments

OptiOn 1: 1f(b, n, WL) Ilat (where b : bool, n : nat, m : nat)
Option 2: add a type to model N X N

In general: introduce new types for new kinds of structure

39

Adding product types

the simply-typed A-calculus
Ax . f(x) = (x — f(x))

How does X X Y behave in Set?

A functional programming language lets you

e form functions
e evaluate functions at arguments

xe X yeyY

(x,y) €XXY

pEA XA,

pair

T(p) € A,

project out a pair

(X1, Xp) = X;

p = (m(p), my(p))

extensionality: a pair is determined by its projections

proj (i = 1,2)

40

Adding product types

the simply-typed A-calculus
Ax . f(x) = (x — f(x))

A functional programming language lets you

e form functions
e evaluate functions at arguments

How does X X Y behave in simply-typed A-calculus?

P, : A, Py : A, P:A XA,

pair proj (I = 1,2)

(P,P,) : A XA, w(P) : A,

project out a pair

7Py, P,) ~3 P;

extensionality: a pair is determined by its projections

P qn <7T1(P)9ﬂ2(P)>

41

The simply-typed A-calculus with products and primitives

= the simplest (typed)
functional programming language
can also add sums / disjoint unions, lists, recursion,

+ any others you might want!

A A P : B abstraction

Ax.P:A—> B

P:A—->B O:A
P(Q) : B application

evaluating = substituting for bound variable

(4x . P)(Q) ~; Plx + Q]

= running the program

extensionality: f = (x — f(x))

P ~, Ax . P(x)

true : bool false : bool 1f(b, n, m) : nat

(n eN)

flip() : bool n:nat plus: nat X nat — nat

plus(3,2) : nat
if(true, 3,2) : nat

Pl : Al P2 : A2 Sair project out a pair
(Py,Py) : A X A, (PP = F
extensionality: a pair is determined
P . A XA by its projections
L2 proj(i=12) P ~, (m(P), 7y(P))
(P) : A,

. + a ‘unit’ type

B-reduction = running the program

(/lp . nat X nat — bool . A7 : nat X nat . if(p(?), 2, Q))(greater_than)(@, 6))
~ 5 (At : nat X nat . if(greater_than(r), 2, 3)) ({5, 6))

~1 5 1f (oreater_than(5,6),2,3)
~15 3

The magic of higher-order functions

higher-order functions = functions of type (A — B) —» C

higher-order functions let you re-use code in a very efficient way

P : ((nat — bool) X (nat — nat)) — nat acts on an arbitrary predicate and arbitrary endo-function on nat
eval: (A =>B)XA —> B AD . (71'1(]?)> (71'2(]?)) :(A—->B)XA—>B
(f, X) - f(.X) m(p): (A - C)
m(p) : A

comp: B=>C)X(A=>B)—-A=>0()

A A (D)) (X)) : (B>C)XA—->B)>A->C)
(&)~ gef / () (=) :)
m(f): (B —C)
m(f) : (A — B)
m(f)x) : B

(m () (m(F)x)) : C

Note the observable behaviour is Ax . (m () (m(fH)x) : A= C
about when values get returned

this is what we care about! 44

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We aSk: terms in some version of simply-typed A-calculus
(1) How should we think about programs??
(2) When are programs interchangeable?

Two notions of equality:

(1) “equality as functions”
(2) “equality as programs”

= same behaviour no matter
what program you put them into

45

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We aSk terms in some version of simply-typed A-calculus
(1) How should we think about programs?

(2) When are programs interchangeable? (4. P)(Q) =, Plx = O]

P=, Ax.P(x
Two notions of equality: P (%)
Bn-equality = gy the congruence generated by ~pU -~ 771'(<P19 P2>) — B Pi (i — 192)
observational equivalence: P ~ . Q iff whatever program C[_] of type bool P =g (mr;(P), m,(P))
or nat we put them in, C|P] and C|[Q] have the
same behaviour
PzﬂnQ — chth

converse is false!

for every program C[—] with a ‘hole’ such that C[P], C[Q] : nat or C[P], C[Q] : bool, we have
46 C[P] terminates with output V and effect £ < (C[(Q] terminates with output V and effect E

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We aSk terms in some version of simply-typed A-calculus
(1) How should we think about programs?

(2) When are programs interchangeable? (4. P)(Q) =, Plx = O]

P=, Ax.P(x
Two notions of equality: P (%)
Bn-equality = gy the congruence generated by ~g U~ ”i(<P19 P2>) — B Pi (l — 192)
observational equivalence: P ~ . Q iff whatever program C[_] of type bool P =g (mr;(P), m,(P))
or nat we put them in, C|P] and C|[Q] have the
same behaviour
P —pn Q — P~y 0 Note the observable behaviour is

converse is false! about when values get returned

this is what we care about!

for every program C[—] with a ‘hole’ such that C[P], C[Q] : nat or C[P], C[Q] : bool, we have
47 C[P] terminates with output V and effect £ < (C[(Q] terminates with output V and effect E

What does programming language theory study?

We aSk terms in some version of simply-typed A-calculus
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality: Note the observable behaviour is
about when values get returned

Bn-equality =, : the congruence generated by ~7, U ~,

observational equivalence: P ~_, - Q iff whatever program C[_] of type bool

or nat we put them in, C|P] and C[Q] have the
same behaviour

this is what we care about!

Two schools:
(1) Syntactic techniques
(2) Semantic techniques

48

What does programming language theory study?

We aSk terms in some version of simply-typed A-calculus
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality: Note the observable behaviour is
about when values get returned

Bn-equality =g, : the congruence generated by ~7; U ~

7
observational equivalence: P ~_, = Q iff whatever program C[_] of type bool

or nat we put them in, C|P] and C[Q] have the
same behaviour

this is what we care about!

use the syntax and the ~ relations directly;

TWO SChOOIS generally inductive arguments
(1) Syntactic techniques
. . easy to refute observational equivalences;
(2) Semant|C teChanueS & f;[ard to pro:[/e themq!

49

What does programming language theory study?

We aSk Terms in some version of simply-typed A-calculus
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality: Note the observable behaviour is
about when values get returned

Bn-equality =g, : the congruence generated by ~7; U ~

7
observational equivalence: P ~_, = Q iff whatever program C[_] of type bool

or nat we put them in, C|P] and C[Q] have the
same behaviour

this is what we care about!

use the syntax and the ~ relations directly;

TWO SChOOIS generally inductive arguments
(1) Syntactic techniques
. . easy to refute observational equivalences;
(2) Semant|C teChanueS & f;[ard to pro:[/e themq!

build semantic models

. easier to prove observational equivalences;
and study those instead P 8

hard to refute them!
50

Coming up next

1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming
4. Explain the interpretation in Diff

51

Cartesian closed categories cccs

def: a cartesian closed category (C, X ,1, =) is a category C
with finite products (X,1)
and a right adjoint A = (—) forevery (—) X A

CX,A; XA, = C(X,A;) X C(X,Ay) C(XXA,B)=C(X,A => B)
fr (@ o fomyof) frs A
Fih) = (i) eval o (f X 4) « f

Cartesian closed categories cccs

def: a cartesian closed category (C, X ,1, =) is a category C
with finite products (X,1)
and a right adjoint A = (—) forevery (—) X A

CX,A; XA, = C(X,A;) X C(X,Ay) C(XXA,B)=C(X,A => B)
fr (@ o fomyof) frs A
Fih) = (i) eval o (f X 4) « f

Cartesian closed categories cccs

def: a cartesian closed category (C, X ,1, =) is a category C
with finite products (X,1)
and a right adjoint A = (—) forevery (—) X A

CX,A;1 XAy = C(X,A)) X C(X,Ay) CXXA,B)=C(X,A=> B)
[(@0 fimy o f) P frs AP
s () < (h) evalo (f X A) «'f

application

abstraction

54

Semantic interpretation

simply-typed [_1 ~ cartesian closed
)\.'CaICUIUS semantic interpretation CategOry (]::
type A - object [[A]]

product object

product type
exponential object

exponential type

. morphism with codomain [[A]]

program P : A
pairing p.airir)g
projections projections

currying A(_)

abstraction
evaluating at arguments

application

Meanings for types in a CCC

Types 3 A,B ::=nat|bool |AXB|A — B

Meanings for types in a CCC

Types 3 A,B ::=nat|bool |AXB|A — B

|nat]] := N
chosen objects
[[b()()l]] i 2 eg 2 := 1 + 1, N := a natural numbers object

Meanings for types in a CCC

Types 3 A,B ::=nat|bool |AXB|A — B

|nat]] := N
chosen objects
[[b()()l]] i 2 eg 2 := 1 + 1, N := a natural numbers object

[A x B] := [A] x [[B]
[A — B] := ([A] = [BI])

[nat — bool] := (N = 2)
[bool — bool]] := (2 = 2)

58

Meanings for terms in a CCC

handling free variables

no free variables

plus : nat X nat — nat

assigns something of type nat whenever we give P : nat X nat

so [[plus] is a map [[nat]] X [nat]] — [nat]];
equivalently, amap 1 — (([[nat]] X [[nat]]) = [[nat]])

59

Meanings for terms in a CCC

handling free variables

no free variables b,n and m free

plus : nat X nat — nat 1f(b, n, m) : nat

assigns something of type nat whenever we give P : nat X nat
assigns something of type nat whenever we give b : bool, n : nat and m : nat

lus] i t]] X t]] — til;]
ZZU[E\I?a:leSn]]tI;/S, : ﬁzﬁ 5[n—a>]](([[1[1[25]1]& [[ngﬁfl)]]=> [nat])) so [1f(b, n, m)] is a map [bool]| X [nat] X [nat]] — [nat]]

60

Meanings for terms in a CCC

handling free variables

no free variables b,n and m free

plus : nat X nat — nat 1f(b, n, m) : nat

assigns something of type nat whenever we give P : nat X nat
assigns something of type nat whenever we give b : bool, n : nat and m : nat

lus] i t]] X t]] — til;]
ZZU[E\I?a:leSn]]tI;/S, : 2325 5[n—a>]](([[E;lta]l]i [[ngﬁfl)]]=> [nat])) so [1f(b, n, m)] is a map [bool]| X [nat] X [nat]] — [nat]]

P : B with free variables (x; : A;),_; __, has

interpretation || P]] : H?zl [A]l = [[B]]

assigns a; € [|A;]l toeach x; : A,
eg [1£](0,2,3) =2

61

Meanings for terms in a CCC

handling free variables

no free variables b,n and m free

plus : nat X nat — nat 1f(b, n, m) : nat

assigns something of type nat whenever we give P : nat X nat
assigns something of type nat whenever we give b : bool, n : nat and m : nat

lus] i t]] X t]] — til;]
ZZU[E\I?a}leSn]]tI;/S, : 2325 5[n—a>]](([[E;lte]l]i [[ngﬁfl)]]=> [nat])) so [1f(b, n, m)] is a map [bool]| X [nat] X [nat]] — [nat]]

P : B with free variables (x; : A;),—_; _, has
interpretation || P]] : H?=1 [A.]l — [B]

for P : B with no free variables, |
assigns a; € [[A;]] toeach x; : A,
[P:1 = [[B]] eg [[if](0,2,3) = 2

soeg P : A — B isidentified with an element of ([JA]] = [B]])

62

P : B with free variables (x; : A;)._;
has interpretation

Meanings for closed terms in Set P AT 181

ooooo

assigns a; € [[A;]l toeach x; : A;

Fix an interpretation |[c]| for each primitive ¢

For P : B with no free variables, [[P]| € || B]]:

[[le-(P)] —
[{P,,P)I = ([P0 .[PQ) ctzixis

(
(
[PCO1 =([P1) ([QT) <ic
[Ax . P]| = Ab . [[P]I(D) 181> 101

ith projection out || P]]) e [B]

63

. _ P : B with free yariables (.xl- CADi=1.
Meanings for terms In Set P T T 1

assigns a; € [[A;]l toeach x; : A;

Fix an interpretation |[c]| for each primitive ¢

For @ € []_, [A]
assigning a; € [[A;]] to each free x; : A, in P:

64

: : P e e)
Meanings for terms In Set P T AT 1

assigns a; € [[A;]l toeach x; : A;

ooooo

Fix an interpretation |[c]| for each primitive ¢

For @ € []_, [A]
assigning a; € [[A;]] to each free x; : A, in P:

[z(P)I(a) = (ith projection out [[P]](E’)) € [B)]
[P, P)I(a@) = ([P 1I(a), [PNI(@)) tuxis

65

P : B with free variables (x; : Ai)i=1,...,n

Meanings for terms In Set 4P T Do 151

assigns a; € [[A;]l toeach x; : A;

Fix an interpretation |[c]| for each primitive ¢
For a & H?=1 [A]]
assigning a; € [[A;]] to each free x; : A, in P:
[z(P)I(a) = (zth projection out [P]|(a)) € [B)]
[(P), P)1I(a) = ([P 1I(a), [P,]I(@)) <izixis

[P(O)]I(@) = ([PI(a)) ([QT(a)) eicl
[[/IX : P]](E)) = Ab . [[P]](a ., [9) € [Bll = [[C]l

_ _ P : B with free variables (x; : A);_,
Meanings for terms in a CCC e T e

assigns a; € [[A;]l toeach x; : A;

ooooo

Fix an interpretation |[c]| for each primitive ¢

Then:
lz(P):Bll=m-[[P:B XB]
[P, P,) : B; X B, = ([P, : B{1l, [P, : B,]l)

[P(Q):C]l=evale([JP: B — C], [0 : B])
[Ax.P : B — CJ]|=A(P: C])

67

P : B with free variables (x; : A;)._;
has interpretation

[P1 : TT., A - [B]

ooooo

Soundness of the interpretation

assigns a; € [[A;]l toeach x; : A;

for any CCC C and any choice of base types and constants,

P=5 Q0 — [Pl =10

in an adequate model, [P]] = [Q]] = P ~_ . 0

68

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) How should we think about programs??
(2) When are programs interchangeable?

Two notions of equality:

Bn-equality =, : the congruence generated by ~1, U ~,

observational equivalence: P ~ . Q iff whatever program C[_] of type bool

or nat we put them in, C| P] and C[Q] have the
same behaviour

69

What does denotational semantics study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs??
(2) When are programs interchangeable?

Two notions of equality:

Bn-equality =, : the congruence generated by ~7; U ~

observational equivalence:

P ~_, . Q iff whatever program C[_] of type bool
or nat we put them in, C| P] and C[Q] have the

same behaviour

70

i

terms in some version of
simply-typed A-calculus
interpreted in a CCC

use adequate models to reason about
observational equivalence of programs

Some example interpretations

languages with no effects

languages with printing,
global memory, exceptions

languages with local memory

languages with recursion

/1

plain CCCs

CCCS Wlth d (strong) the monad 7 describes the
monad effect, eg (=) + 1 or §* X (=)

preSheaf think: programs parametrised by
CategO”eS possible states of the memory

order-enriched
categories

< models ‘how defined’ a function is

each recursive call goes up the order;
the whole loop is then a fixpoint

looping forever modelled by a bottom element

How should we think about programs?

fun add(x, y):
return (x+y)

fun divide(x, y):
return (x/y)

fun print_and_return(x):
print “hello”;
return x;

a function N XN — N

a function Zx Z_, — Q
a function 7 x 7 — Q + {fail}

a function N — {a,b,...,z}* X N

x + (hello, x)

(2

Coming up next

1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming
4. Explain the interpretation in Diff

/3

IMensiona

low-d

Imensiona

high-d

output

t

inpu

. cat

9

74

high-dimensional program 1> with many parameters |,_dimensional

" eg a neural network with many layers, and different weights for the activation functions
INput ylay : output

high-dimensional program 1> with many parameters |,_dimensional
in pu-t eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done |
| numerically, but it’s

hard in general!

aim: optimise the parameters for P /

so that, eq, it classifies cats as cats as often as possible

https://www.youtube.com/watch?
v=5u4G23_0Oohl

/6

high-dimensional program 1> with many parameters |4\y_dimensional
in pu-t eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done |
| numerically, but it’s

hard in general!

aim: optimise the parameters for P /

so that, eq, it classifies cats as cats as often as possible

———

can we write an algorithm to calculate derivatives exactly?
https://www.youtube.com/watch? o
v=5u4G23_Oohl ...and can we prove this is correct?

“forward AD”,
“reverse AD”, etc

’r’

high-dimensional program 1> with many parameters |,_dimensional

in pu-t eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done |
| numerically, but it’s

hard in general!

aim: optimise the parameters for P /

so that, eq, it classifies cats as cats as often as possible

can we write an algorithm to calculate derivatives exactly?
https://www.youtube.com/watch? o
v=5u4G23_Oohl ...and can we prove this is correct?

“forward AD” differentiable programming tensorfiow, PyTorch, eto
“reverse AD”, etc _
= languages where you can automatically
compute the derivative of any program

/8

high-dimensional program 1> with many parameters |5_dimensional

N put eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done

numerically, but it’s
hard in general!

aim: optimise the parameters for P = a serious bottleneck

so that, eq, it classifies cats as cats as often as possible

0,

https://www.youtube.com/
watch?v=5u4G23_QOohl

from the denotational semantics POV: essentially, using the chain rule

and “dual numbers”

(1) [P]] is some smooth function R" — |
(2) aim: to algorithmically define a program D(P)
and prove that [D(P)] = D([[P]])

79

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed A-calculus + primitives for real numbers etc

82

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed A-calculus + primitives for real numbers etc

n

— |

(3) a program P : real is meant to represent a smooth function |

83

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed A-calculus + primitives for real numbers etc

n

— |

(3) a program P : real is meant to represent a smooth function |

(4) define D(P) by induction on the simply-typed A-calculus
and check [[D(P)]] = D(||P])

84

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed A-calculus + primitives for real numbers etc

n

— |

(3) a program P : real is meant to represent a smooth function |
)

(4) define D(P) by induction on the simply-typed A-calculus
and check [[D(P)]| = D(||P])

) =z B(c) € (c,0)
def

+s) = case D(t)of (z,z') — caseB(s) of (y,y) = (x +y,2’ +y')

D(
Bt
B(t *s) = case B(t)of (z,z') — case B(s)of (y,y) = @ *Y, T %Y + 2 ¥Y) 1om Comectness of Automaic
B(q

D(

def Differentiation via Diffeologies and

(t)) — Ccase B(t) Of <$7 $/> — let Yy = C({E) in <y7 .’E, * Y * (1 o y)> Categorical Gluing

(Azt) € Az B(t) Bts) E BOB(s) B((tr,---ota) = (Blta)s -, Bltn))

85

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

a natural suggestion;

(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed A-calculus + primitives for real numbers etc

n

— |

(3) a program P : real is meant to represent a smooth function |

(4) define D(P) by induction on the simply-typed A-calculus
and check [[D(P)]] = D(||P])

le. we interpret in the category of cartesian spaces « r"wrsomeny aNd SMO0Oth maps

but this category Is not cartesian closed! andeven P: real may contain lambdas,
eg (Af. Ax .f(x + X)) (exp)(2)

86

high-dimensional program 1> with many parameters |5_dimensional

in put eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done

| numerically, but it’s
| hard in general!

aim: optimise the parameters for P = a serious bottleneck

so that, eq, it classifies cats as cats as often as possible

can we write an algorithm to calculate derivatives exactly?

https://www.youtube.com/ o
watch?v=5u4G23_Oohl ...and can we prove this is correct?

87

high-dimensional program 1> with many parameters |5_dimensional
in put eg a neural network with many layers, and different weights for the activation functions OUtpUt

ie differentiate the function described by P can be done
| numerically, but it’s

| hard in general!
aim: optimise the parameters for P

so that, eq, it classifies cats as cats as often as possible

https://www.youtube.com/ can we write an algorithm to calculate derivatives exactly?
wateh?v=ou4G23_Oohl ...and can we prove this is correct?

the natural semantic model for studying this problem
does not support higher-order functions

88

high-dimensional program 1> with many parameters |5_dimensional
in put eg a neural network with many layers, and different weights for the activation functions Output

ie differentiate the function described by P can be done
| numerically, but it’s

| hard in general!
aim: optimise the parameters for P

so that, eq, it classifies cats as cats as often as possible

https://www.youtube.com/ can we write an algorithm to calculate derivatives exactly?
wateh?v=ou4G23_Oohl ...and can we prove this is correct?

the natural semantic model for studying this problem
does not support higher-order functions

89

high-dimensional program 1> with many parameters |5_dimensional
in put eg a neural network with many layers, and different weights for the activation functions Output

ie differentiate the function described by P can be done
| numerically, but it’s

| hard in general!
aim: optimise the parameters for P

so that, eq, it classifies cats as cats as often as possible

https://www.youtube.com/ can we write an algorithm to calculate derivatives exactly?
wateh?v=ou4G23_Oohl ...and can we prove this is correct?

the natural semantic model for studying this problem
does not support higher-order functions

we need a CCC that supports some notion of derivative

90

The category of diffeological spaces

Di1tt is a nice semantic model! It has:

(1) cartesian closure

(2) a full embedding CartSp — Daif

(3) coproducts

(4) initial algebras for endofunctors

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

The strategy:

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

The strategy:
(a) interpret programs P in Dift

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

so there’s a good
notion of derivative
for these programs

The strategy:
(a) interpret programs P in Dift
(b) prove that [[P : real]] always lands in CartSp, even if it has lambdas

94

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

so there’s a good
notion of derivative
for these programs

The strategy:
(a) interpret programs P in Dift
(b) prove that [[P : real]] always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type

need this to handle
open variables

95

Proving correctness of automatic differentiation

[Huot, Staton, Vakar]

so there’s a good
notion of derivative
for these programs

The strategy:

a) interpret programs P in Dift
b) prove that [P : real]] always lands in CartSp, even if it has lambdas
C) prove a correctness property for differentiation, at every type

(
(
(
(d) deduce correctness of the D(—) algorithm at type real

need this to handle
open variables

96

Why do denotational semanticists care about Di{f?

It provides a good semantic model for differentiable functional programming
...Including function types

...which is conservative over the natural model in CartSp

97

Why do denotational semanticists care about Di{f?

It provides a good semantic model for differentiable functional programming
...Including function types

...which is conservative over the natural model in CartSp

SO0 we can prove facts about derivatives of programs,
...Including higher-order ones
...and thereby verify automatic differentiation algorithms

98

Why do denotational semanticists care about Di{f?

It provides a good semantic model for differentiable functional programming
...Including function types

...which is conservative over the natural model in CartSp

SO0 we can prove facts about derivatives of programs,
...Including higher-order ones
...and thereby verify automatic differentiation algorithms

And, at type real the interpretation coincides with the natural one

99

Dift at work for semantics

(1) An analogy
(2) Adding recursion
(3) Cutting down the model: full abstraction

Probabilistic programming

|dea:
(1) programs express statistical models,
iIncluding conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

101

Probabilistic programming

|dea:
(1) programs express statistical models,
iIncluding conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

normalise(
let x = sample(bernoulli(0.8));
let r = (if x then 10 else 3);
observe 0.45 from exponential(r)
return(x)

)

How do we interpret probabilistic programs?
What is a good semantic model?

102

Probabilistic programming

|dea:
(1) programs express statistical models,
iIncluding conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

normalise(ey
| probabilistic programs
let x = sample(bernoulli(0.8)); ‘should’ be interoreted b
let r = (if x then 10 else 3&); P | y
observe 0.45 from exponential(r) measurable functions
) retuno but Meas is not cartesian closed!

= no way to interpret higher-order functions

How do we interpret probabilistic programs?
What is a good semantic model?

103

QuaSi — BO rel Spa ces [Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

Di1ftf = category of concrete sheaves on cartesian manifolds

QBS = category of concrete sheaves on standard Borel spaces

/

always a quasi-topos, in particular a CCC

BS provides a good semantic model for probabilistic programming,
just as Diif provides a good semantic model for differentiable programming

104

Dift at work for semantics

(1) An anaIOgy: quaSi—BOrel SpPacCes [Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]
(2) Adding recursion
(3) Cutting down the model: full abstraction

105

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying
plus(x,0) = x
plus(x,y+ 1) = plus(x,y) + 1

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying
plus(x,0) = x
plus(x,y+ 1) = plus(x,y) + 1

recursion in simply-typed A-calculus:

P:A—->A
nx(M) : A

fix(M) ~ M (fix(M))

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying
plus(x,0) = x
plus(x,y+ 1) = plus(x,y) + 1

recursion in simply-typed A-calculus:

P:A—->A
nx(M) : A

fix(M) ~ M (fix(M))

fix(M) =4, M (fix(M))

108

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying DA A

fix(M) : A

plus(r.0) = x fix(M) ~ M (fix(M))

plus(x,y+ 1) = plus(x,y) + 1

fix(M) =4, M (fix(M))

109

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying DA A

fix(M) : A

plus(r.0) = x fix(M) ~ M (fix(M))

plus(x,y+ 1) = plus(x,y) + 1

M

plus := ﬁX(/lp Ax . Ay .ify==0thenxelse px(y — 1))

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying DA A

fix(M) : A

plus(r.0) = x fix(M) ~ M (fix(M))

plus(x,y+ 1) = plus(x,y) + 1

M

plus := ﬁX(/lp Ax . Ay .ify==0thenxelse px(y — 1))

plus ~ M (plus)
~15 Ax . Ay . if y == 0 text x else plus x (y — 1)

111

Adding recursion to simply-typed A-calculus

[Scott, Plotkin,...]

plus : N X N — N is the least map satisfying DA A

fix(M) : A

plus(r.0) = x fix(M) ~ M (fix(M))

plus(x,y+ 1) = plus(x,y) + 1

M

plus := ﬁX(/lp Ax . Ay .ify==0thenxelse px(y — 1))

plus ~ M (plus)
~15 Ax . Ay . if y == 0 text x else plus x (y — 1)

plusxy ~ (/Ix Ay . if y==0then x else plus x (y — 1)) XYy
~ if y==0then x else plusx (y — 1)

112

Adding recursion to the semantics -..-....

P:A—->A
hx(M) : A

fix(M) ~ M (fix(M)) fix(M) =4, M (fix(M))

Adding recursion to the semantics -..-....

P:A—->A
hx(M) : A

fix(M) ~ M (fix(M)) fix(M) =4, M (fix(M))

Standard semantics = w-complete partial orders with a bottom element

Adding recursion to the semantics -..-....

P:A—->A
hx(M) : A

fix(M) ~ M (fix(M)) fix(M) =4, M (fix(M))

Standard semantics = w-complete partial orders with a bottom element

A Scott domain is a partially ordered set (X, <, L) where
(1) every chainx, < x; < --- < X, < --* has a least upper bound

2) L < xforallx

115

Adding recursion to the semantics -..-....

P:A—->A
hx(M) : A

fix(M) ~ M (fix(M)) fix(M) =4, M (fix(M))

Standard semantics = w-complete partial orders with a bottom element

A Scott domain is a partially ordered set (X, <, L) where
(1) every chainx, < x; < --- < X, < --* has a least upper bound

2) L < xforallx

by Tarski’s fixpoint theorem

Forms a CCC, and every map has a least fixed point
x such that f(x) = x
[ix(M)]] = least fixed point of [[M ||

116

Also an analogous construction
for quasi-Borel spaces!

[Vakar, Kammar, Staton]

Adding recursion to Diif ...

A Scott domain is a partially ordered set (X, <, 1) where
(1) every chainx, < x; < --- < X, < --* has a least upper bound

2) L < xforallx

Forms a CCC, and every map has a least fixed point
X such that f(x) = x
[1x(M)]] = least fixed point of [[M]]

117

Also an analogous construction
for quasi-Borel spaces!

[Vakar, Kammar, Staton]

Adding recursion to Diif ...

A Scott domain is a partially ordered set (X, <, 1) where
(1) every chainx, < x; < --- < X, < --* has a least upper bound

2) L < xforallx

Forms a CCC, and every map has a least fixed point
X such that f(x) = x
[1x(M)]] = least fixed point of [[M]]

def: an w-diffeological space (X, Py, <) is
a diffeological space (X, &y)
...such that (X, <) is a domain
...and @)((] IS closed under least upper bounds of chains

118

Also an analogous construction
for quasi-Borel spaces!

[Vakar, Kammar, Staton]

Adding recursion to Diif ...

A Scott domain is a partially ordered set (X, <, 1) where
(1) every chainx, < x; < --- < X, < --* has a least upper bound

2) L < xforallx

Forms a CCC, and every map has a least fixed point
X such that f(x) = x
[1x(M)]] = least fixed point of [[M]]

Can extend correctness

def: an w-diffeological space (X, Py, <) is results for AD to languages
with recursion!

a diffeological space (X, &y)
...such that (X, <) is a domain
...and @)((] IS closed under least upper bounds of chains

119

Dift at work for semantics

(1) An anaIOgy: quaSi—BOrel SpPacCes [Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]
(2) Add|ng reCUFSIOn [Vakar] [Vakar, Kammar, Staton]
(3) Cutting down the model: full abstraction

120

Cutting down Diff,

Given P ~

Is the model
— CtX Q’ can we deduce [[P]] — [[Q]]? fully abstract?

121

Cutting down Diff,

Given P ~

Is the model
— CtX Q’ can we deduce [[P]] — [[Q]]? fully abstract?

In general, no!
| P]| and [| Q]| can agree on all definable things, but still differ!

the semantics expresses richer behaviour than the syntax

122

Cutting down Diff,

Given P ~

Is the model
— CtX Q’ can we deduce [[P]] — [[Q]]? fully abstract?

In general, no!
| P]| and [| Q]| can agree on all definable things, but still differ!

the semantics expresses richer behaviour than the syntax

Solution:
refine the model so every f : [[A]] — [[B]] is definable

difficult bit: doing this for exponentials

123

Cutting down Diff,

Given P ~__ O, we can't deduce [[P] = [[Q] | 5. moce

— CtX fully abstract?

Solution:
refine the model so every f : [[A]] — [| B]] is definable

idea: internalise the idea that f is definable

dlﬂ:lCUIt blt dOIng th'S fOr eXpOnentlaIS if it preserves the property of being definable

124

Cutting down Diff,

Given P ~__ O, we can't deduce [[P] = [[Q] | 5. moce

— CtX fully abstract?

Solution:
refine the model so every f : [[A]] — [| B]] is definable

idea: internalise the idea that f is definable

dlﬂ:lCUIt blt dOIng th'S fOr eXpOnentlaIS if it preserves the property of being definable

objects = diffeological spaces paired with a family of relations (neW mOdel)

morphisms = smooth maps preserving the relations -
| preserves primitives and products,

but not exponentials

choose the class of relations intensionally lef
SO maps preserving the relation are definable

125

Dift at work for semantics

(1) An anaIOgy: quaSi—BOrel SpPacCes [Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]
(2) Add|ng reCUFSiOn [Vakar] [Vakar, Kammar, Staton]
(3) Cutting down the model: full abstraction yammar, katsumata, s

126

Denotational semantics:

» |dealised functional programming language
= simply-typed A-calculus

* interchangeability of programs
= observational equivalence

 Interpret programs in CCCs

D1t is a good model for studying
automatic differentiation of programs

127

<R

0

https://www.youtube.com/watch?
v=5u4G23_0Oohl

