
Philip Saville, University of Oxford
these slides available at philipsaville.co.uk

Diffeological spaces as a model
for differentiable programs
A tutorial

1

http://philipsaville.co.uk

(1) What questions does denotational semantics study?

(2) Why are cartesian closed categories so important?

(3) Where do diffeological spaces come in?

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs?

gets interesting when programs have effects
= interaction with the world

3

let b = flip(p);

return b; return (heads)

let b = flip(p);

if b == heads:

then return (heads);

else return (heads);

return (heads)

more efficient
not correct!

more efficient
correct!

When are programs interchangeable?
example 1

flips a coin with bias p ∈ [0,1]

4

When are programs interchangeable?

fun double1(n):

set_memory location1 := n;

return (

get_memory (location1)

+ get_memory (location1)

);

fun double2(n):

set_memory location1 := n

set_memory location2 := n

return (

get_memory (location1)

+ get_memory (location2)

);

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := 0

…

locationk := 0

memory memory

double1(n)

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := n

…

locationk := 0

memory memory

double2(n)

5

example 2

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := 0

…

locationk := 0

memory memory

double1(n)

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := n

…

locationk := 0

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝

6

example 2

∀n . double1(n) = double2(n)location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := 0

…

locationk := 0

memory memory

double1(n)

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := n

…

locationk := 0

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝

7

example 2

∀n . double1(n) = double2(n)

doublei(2);

let n = get_memory location2;

if n > 0:

then return (false);

else return (true);

return (true); return (false);

i = 1 i = 2

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := 0

…

locationk := 0

memory memory

double1(n)

location1 := 0

location2 := 0

…

locationk := 0

location1 := n

location2 := n

…

locationk := 0

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝

8

example 2

but can distinguish them by looking at memory:

When are programs interchangeable?

programs and are observationally equivalent

if there’s no way to observe a difference in behaviour

P Q

any program containing gives a result

iff gives the same result

𝒞[P] P
𝒞[Q]

9

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs?

10

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs? depends on how

programs run

generally harder than
function equality

observational equivalence

depends on the
language’s features

11

Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?

12

Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?

13

Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?

if there’s no way to tell them apart, they must be the same!
14

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs? depends on how

programs run

generally harder than
function equality

observational equivalence

depends on the
language’s features

15

How should we think about programs?
a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

How should we think about programs?

fun divide(x, y):

return (x / y)

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

17

How should we think about programs?

fun divide(x, y):

return (x / y)

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x):

print “hello”;

return x;

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

How should we think about programs?

fun divide(x, y):

return (x / y)

let b = flip(p);

return b;

a probability distribution on
{heads, tails}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x):

print “hello”;

return x;

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

19

How should we think about programs?

fun divide(x, y):

return (x / y)

let b = flip(p);

return b;

a probability distribution on
{heads, tails}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x):

print “hello”;

return x;

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)

)

some measurable function (??)

20

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs?

some kind
of function?

need something beyond set-theoretic
functions to model richer features!

depends on how
programs run

uses ideas from:

- topology

- logic

- order theory

generally harder than
function equality

observational equivalence

depends on the
language’s features

21

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) When are programs interchangeable?

(2) How should we think about programs?

The denotational semantics perspective:

(1) Assign every program a meaning

(2) Reason about equality of programs via their meaning

(3) The semantic model tells you what programs ‘really are’

P [[P]]

22

Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming

4. Explain the interpretation in Diff

23

What is a program?

something modelled by a Turing machine

a kind of function

memory you can read
to & write from

n1 = 0

n2 = 1

steps_taken = 0

while (steps_taken < 100) {

fib = n1 + n2

n1 = n2

n2 = fib

steps_taken = steps_taken + 1

}

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Java, C, C++, …

OCaml, Haskell,
Standard ML,…

• form functions

• evaluate functions at arguments

So a functional programming language lets you

24

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

f(x) = x3 + x2 + 1

function body

bound variable

may not use , eg x f(x) = 3

the matters: if

then but is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg
f(x) = 3y + x

every other
variable is free

25

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

f(x) = x3 + x2 + 1

function body

bound variable

f(3) = (x3 + x2 + 1)[x ↦ 3]
= 33 + 32 + 1

evaluating = substituting for bound variable

may not use , eg x f(x) = 3

the matters: if

then but is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg
f(x) = 3y + x

every other
variable is free

26

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

f(x) = x3 + x2 + 1

function body

bound variable

f(3) = (x3 + x2 + 1)[x ↦ 3]
= 33 + 32 + 1

evaluating = substituting for bound variable

may not use , eg x f(x) = 3

the matters: if

then but is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg
f(x) = 3y + x

every other
variable is free

in whenever ℝ x ∈ ℝ

x ∈ ℝ

3 ∈ ℝ

27

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

function body

bound variable

 is a programx3 + x2 + 1
 is a program(x ↦ x3 + x2 + 1)

 is a program(x ↦ x3 + x2 + 1)

 is a program(x ↦ x3 + x2 + 1)(3)

 is a program3

(x ↦ x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other
variable is free

28

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

function body

bound variable

 is a programx3 + x2 + 1
 is a programλx . x3 + x2 + 1

(λx . x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the λ-calculus

 is a programλx . x3 + x2 + 1

 is a program(λx . x3 + x2 + 1)(3)

 is a program3

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other
variable is free

29

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you
function body

bound variable

 is a program of type x3 + x2 + 1 ℝ
 is a program of type λx . x3 + x2 + 1 ℝ → ℝ

(λx . x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

 is a program of type λx . x3 + x2 + 1 ℝ → ℝ
 is a program of type (λx . x3 + x2 + 1)(3) ℝ

 is a program of type 3 ℝ

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other
variable is free

30

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you
function body

bound variable

 is a program of type P B
 is a program of type λx . P A → B

evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))

 is a program of type P A → B
 is a program of type P(Q) B

 is a program of type Q A

abstraction

application

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

every other
variable is free

 is a variable of type x A

the simply-typed λ-calculus

(λx . P)(Q) ↝β P[x ↦ Q]

31

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you
function body

bound variable

 is a program of type P B
 is a program of type λx . P A → B

(λx . P)(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))

 is a program of type P A → B
 is a program of type P(Q) B

 is a program of type Q A

abstraction

application

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

every other
variable is free

 is a variable of type x A

the simply-typed λ-calculus

 is a variable of type x A
 is a program of type x A

32

P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))

33

P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

f : A → B
f(x) : B

λx . f(x) : A → B

x : A

λf . λx . f(x) : (A → B) → (A → B)
eval : (A ⇒ B) × A → B

(f, x) ↦ f(x)

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))

34
via currying X → (A ⇒ B) ≅ (X × A) → B

P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions

• evaluate functions at arguments

A functional programming language lets you

f : A → B
f(x) : B

λx . f(x) : A → B

x : A

λf . λx . f(x) : (A → B) → (A → B)

eval : (A ⇒ B) × A → B
(f, x) ↦ f(x)

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))

λx . g(f x) : A → C
λf . λx . g(f x) : (A → B) → (A → C)

g : B → C f(x) : B
g(f(x)) : C

comp : (B ⇒ C) × (A ⇒ B) → (A ⇒ C)
(g, f) ↦ g ∘ f

f : A → B x : A

λg . λf . λx . g(f x) : (B → C) → ((A → B) → (A → C))
35

via currying X → (A ⇒ B) ≅ (X × A) → B

Things we can’t do

• form functions

• evaluate functions at arguments

A functional programming language lets you

Note there’s no restrictions on either rule!

 is a variablef
 is a programf

 is a programf(f)
 is a programλf . f(f)

(λf . f(f)) (λf . f(f)) ↝ (λf . f(f)) [f ↦ (λf . f f)]
= (λf . f(f)) (λf . f(f))

Looping, recursion, …

1:= (λf . λf . f(x))
2:= (λf . λf . f(f x))

plus := (λm . λn . λf . λx . m f (n f x))

Encode Peano arithmetic

P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the λ-calculus is a programP

 is a programλx . P
abstraction

 is a programP
 is a programP(Q)

 is a programQ
application

 is a variablex
 is a programx

= running the program

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

36

Adding primitives

• form functions

• evaluate functions at arguments

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

flip() : bool

37

Adding primitives

• form functions

• evaluate functions at arguments

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

What about etc?plus, if
plus : ℕ × ℕ → ℕ

if : 2 × ℕ × ℕ → ℕ

if(i, n, m) = {n if i = 0
m if i = 1

flip() : bool

38

Adding primitives

• form functions

• evaluate functions at arguments

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

What about etc?plus, if
plus : ℕ × ℕ → ℕ

in general: introduce new types for new kinds of structure

if : 2 × ℕ × ℕ → ℕ

Option 1: if(b, n, m) : nat (where b : bool, n : nat, m : nat)

Option 2: add a type to model ℕ × ℕ

if(i, n, m) = {n if i = 0
m if i = 1

flip() : bool

39

Adding product types

• form functions

• evaluate functions at arguments

A functional programming language lets you

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

y ∈ Y
(x, y) ∈ X × Y

p ∈ A1 × A2
πi(p) ∈ Ai

 x ∈ X
pair proj (i = 1,2)

How does behave in ?X × Y Set

πi(x1, x2) = xi

project out a pair

p = (π1(p), π2(p))
extensionality: a pair is determined by its projections

40

Adding product types

• form functions

• evaluate functions at arguments

A functional programming language lets you

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

P2 : A2

⟨P1, P2⟩ : A1 × A2

P : A1 × A2
πi(P) : Ai

 P1 : A1 pair proj (i = 1,2)

How does behave in simply-typed λ-calculus?X × Y

πi⟨P1, P2⟩ ↝β Pi

project out a pair

P ↝η ⟨π1(P), π2(P)⟩
extensionality: a pair is determined by its projections

41

The simply-typed λ-calculus with products and primitives

P2 : A2

⟨P1, P2⟩ : A1 × A2

P : A1 × A2
πi(P) : Ai

 P1 : A1 pair

proj (i = 1,2)

πi(P1, P2) ↝β Pi

project out a pair

P ↝η (π1(P), π2(P))
extensionality: a pair is determined

by its projections

P : B
λx . P : A → B

P : A → B
P(Q) : B

Q : A

 x : A
abstraction

application

(λx . P)(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

= running the program

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

true : bool false : bool

plus : nat × nat → nat

if(b, n, m) : nat

n : nat
(n ∈ ℕ)

= the simplest (typed)

functional programming language

plus⟨3, 2⟩ : nat
if(true, 3, 2) : nat

+ any others you might want!

flip() : bool

can also add sums / disjoint unions, lists, recursion, ….

+ a ‘unit’ type42

β-reduction = running the program

(λp : nat × nat → bool . λt : nat × nat . if(p(t), 2, 3))(greater_than)(⟨5, 6⟩)

↝β (λt : nat × nat . if(greater_than(t), 2, 3))(⟨5, 6⟩)

↝β if(greater_than⟨5, 6⟩, 2, 3)
↝β 3

The magic of higher-order functions

eval : (A ⇒ B) × A → B
(f, x) ↦ f(x)

comp : (B ⇒ C) × (A ⇒ B) → (A ⇒ C)
(g, f) ↦ g ∘ f

λp . (π1(p))(π2(p)) : (A → B) × A → B

λf . λx . (π1(f))(π2(f)(x)) : ((B → C) × (A → B)) → (A → C)
π1(f) : (B → C)
π2(f) : (A → B)
π2(f)(x) : B
(π1(f))(π2(f)(x)) : C
λx . (π1(f))(π2(f)(x)) : A → C

π1(p) : (A → C)
π2(p) : A

P : ((nat → bool) × (nat → nat)) → nat acts on an arbitrary predicate and arbitrary endo-function on nat

higher-order functions = functions of type (A → B) → C
higher-order functions let you re-use code in a very efficient way

Note the observable behaviour is
about when values get returned

this is what we care about!
44

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

Two notions of equality:
(1) “equality as functions”

(2) “equality as programs”

= same behaviour no matter

what program you put them into

terms in some version of simply-typed λ-calculus

45

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

for every program with a ‘hole’ such that or , we have C[−] C[P], C[Q] : nat C[P], C[Q] : bool
C[P] terminates with output V and effect E ⟺ C[Q] terminates with output V and effect E

(λx . P)(Q) =βη P[x ↦ Q]
P =βη λx . P(x)

πi(⟨P1, P2⟩) =βη Pi (i = 1,2)
P =βη ⟨π1(P), π2(P)⟩

P =βη Q ⟹ P ≃ctx Q
converse is false!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

46

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

for every program with a ‘hole’ such that or , we have C[−] C[P], C[Q] : nat C[P], C[Q] : bool
C[P] terminates with output V and effect E ⟺ C[Q] terminates with output V and effect E

(λx . P)(Q) =βη P[x ↦ Q]
P =βη λx . P(x)

πi(⟨P1, P2⟩) =βη Pi (i = 1,2)
P =βη ⟨π1(P), π2(P)⟩

P =βη Q ⟹ P ≃ctx Q
converse is false!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

47

Note the observable behaviour is
about when values get returned

this is what we care about!

What does programming language theory study?
We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

Two schools:

(1) Syntactic techniques

(2) Semantic techniques

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

48

Note the observable behaviour is
about when values get returned

this is what we care about!

What does programming language theory study?
We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

Two schools:

(1) Syntactic techniques

(2) Semantic techniques

use the syntax and the relations directly;

generally inductive arguments

↝

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

49

Note the observable behaviour is
about when values get returned

this is what we care about!

easy to refute observational equivalences;
hard to prove them!

What does programming language theory study?
We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

Terms in some version of simply-typed λ-calculus

Two schools:

(1) Syntactic techniques

(2) Semantic techniques

use the syntax and the relations directly;

generally inductive arguments

↝

easy to refute observational equivalences;
hard to prove them!

build semantic models
and study those instead easier to prove observational equivalences;

hard to refute them!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

50

Note the observable behaviour is
about when values get returned

this is what we care about!

Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming

4. Explain the interpretation in Diff

51

Cartesian closed categories (CCCs)

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f)

⟨ f1, f2⟩ (f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ(f)

eval ∘ (f × A) f

Λ(f)(x) = f(x, _)

f̃(x, a) = f(x)(a)⟨ f1, f2⟩(x) = (f1x, f2x)

a cartesian closed category is a category

with finite products

and a right adjoint for every

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ (−) (−) × A

def:

52

Cartesian closed categories (CCCs)

a cartesian closed category is a category

with finite products

and a right adjoint for every

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ (−) (−) × A

def:

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f)

⟨ f1, f2⟩ (f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ(f)

eval ∘ (f × A) f

Λ(f) = λx . f(x, _)

eval ∘ (f × A) = λ(x, a) . f(x)(a)
⟨ f1, f2⟩ = λx . (f1x, f2x)

53

eval = λ(f, x) . f(x)

Cartesian closed categories (CCCs)

a cartesian closed category is a category

with finite products

and a right adjoint for every

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ (−) (−) × A

def:

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f)

⟨ f1, f2⟩ (f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ(f)

eval ∘ (f × A) f

Λ(f) = λx . f(x, _)

eval ∘ (f × A) = λ(x, a) . f(x)(a)
⟨ f1, f2⟩ = λx . (f1x, f2x)

54

eval = λ(f, x) . f(x) application

abstraction

projections

pairing

Semantic interpretation

simply-typed
λ-calculus

cartesian closed
category ℂ

[[_]]
semantic interpretation

type A object [[A]]

program P : A morphism with codomain [[A]]

product type

exponential type

product object

exponential object

pairing

projections

abstraction

application

pairing

projections

currying

evaluating at arguments

Λ(_)

Meanings for types in a CCC

Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B

56

Meanings for types in a CCC

Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B

[[nat]] := ℕ
[[bool]] := 2

[[A × B]] := [[A]] × [[B]]
[[A → B]] := ([[A]] ⇒ [[B]])

[[nat → bool]] := (ℕ ⇒ 2)
[[bool → bool]] := (2 ⇒ 2)

⋮

57

, a natural numbers object eg 2 := 1 + 1 ℕ :=
chosen objects

Meanings for types in a CCC

Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B

[[nat]] := ℕ
[[bool]] := 2

[[A × B]] := [[A]] × [[B]]
[[A → B]] := ([[A]] ⇒ [[B]])

[[nat → bool]] := (ℕ ⇒ 2)
[[bool → bool]] := (2 ⇒ 2)

⋮

58

, a natural numbers object eg 2 := 1 + 1 ℕ :=
chosen objects

Meanings for terms in a CCC
handling free variables

no free variables

plus : nat × nat → nat
assigns something of type whenever we give nat P : nat × nat

so is a map ;
equivalently, a map

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

59

Meanings for terms in a CCC
handling free variables

no free variables freeb, n and m

plus : nat × nat → nat
assigns something of type whenever we give nat P : nat × nat

so is a map ;
equivalently, a map

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type whenever we give nat b : bool, n : nat and m : nat
so is a map [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]

60

Meanings for terms in a CCC

 with free variables has
interpretation

P : B (xi : Ai)i=1,…,n
[[P]] : ∏n

i=1 [[Ai]] → [[B]]

handling free variables
no free variables freeb, n and m

plus : nat × nat → nat
assigns something of type whenever we give nat P : nat × nat

so is a map ;
equivalently, a map

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type whenever we give nat b : bool, n : nat and m : nat
so is a map [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]

assigns to each ai ∈ [[Ai]] xi : Ai
eg [[if]](0,2,3) = 2

61

Meanings for terms

 with free variables has
interpretation

P : B (xi : Ai)i=1,…,n
[[P]] : ∏n

i=1 [[Ai]] → [[B]]

handling free variables
no free variables freeb, n and m

plus : nat × nat → nat
assigns something of type whenever we give nat P : nat × nat

so is a map ;
equivalently, a map

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type whenever we give nat b : bool, n : nat and m : nat
so is a map [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]

assigns to each ai ∈ [[Ai]] xi : Ai
eg [[if]](0,2,3) = 2

for with no free variables,

P : B
[[P]] : 1 → [[B]]

so eg is identified with an element of P : A → B ([[A]] ⇒ [[B]])

62

Meanings for terms in a CCC

Meanings for closed terms in Set
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation for each primitive [[c]] c

For with no free variables, :P : B [[P]] ∈ [[B]]

[[πi(P)]](⃗a) = (ith projection out [[P]](⃗a))
[[⟨P1, P2⟩]](⃗a) = ([[P1]](⃗a), [[P2]](⃗a))

[[P(Q)]](⃗a) = ([[P]](⃗a)) ([[Q]](⃗a))
[[λx . P]](⃗a) = λb . [[P]](⃗a , b)

63

∈ [[B1]] × [[B2]]

∈ [[Bi]]

∈ [[B]] ⇒ [[C]]

∈ [[C]]

Meanings for terms in Set
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation for each primitive [[c]] c

For

assigning to each free in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P

64

Meanings for terms in Set
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation for each primitive [[c]] c

For

assigning to each free in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P

[[πi(P)]](⃗a) = (ith projection out [[P]](⃗a))
[[⟨P1, P2⟩]](⃗a) = ([[P1]](⃗a), [[P2]](⃗a))

65

∈ [[B1]] × [[B2]]

∈ [[Bi]]

Meanings for terms in Set
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation for each primitive [[c]] c

For

assigning to each free in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P

[[πi(P)]](⃗a) = (ith projection out [[P]](⃗a))
[[⟨P1, P2⟩]](⃗a) = ([[P1]](⃗a), [[P2]](⃗a))

[[P(Q)]](⃗a) = ([[P]](⃗a)) ([[Q]](⃗a))
[[λx . P]](⃗a) = λb . [[P]](⃗a , b)

66

∈ [[B1]] × [[B2]]

∈ [[Bi]]

∈ [[B]] ⇒ [[C]]

∈ [[C]]

Meanings for terms
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation for each primitive [[c]] c
Then:

[[πi(P) : Bi]] = πi ∘ [[P : B1 × B2]]
[[⟨P1, P2⟩ : B1 × B2]] = ⟨[[P1 : B1]], [[P2 : B2]]⟩

[[P(Q) : C]] = eval ∘ ⟨[[P : B → C]], [[Q : B]]⟩
[[λx . P : B → C]] = Λ([[P : C]]) Λ(f) = λx . f(x, _)

eval ∘ (f × A) = λ(x, a) . f(x)(a)

⟨ f1, f2⟩(x) = (f1x, f2x)

67

Meanings for terms in a CCC

Soundness of the interpretation
 with free variables

has interpretation
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns to each ai ∈ [[Ai]] xi : Ai

68

for any CCC and any choice of base types and constants,
ℂ
P =βη Q ⟹ [[P]] = [[Q]]

in an adequate model, [[P]] = [[Q]] ⟹ P ≃obs Q

in fact, simply-typed λ-calculus modulo is

a sound and complete logic for CCCs

=βη

What does programming language theory study?

We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

 iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

69

What does denotational semantics study?
We want programs that are:

efficient, fast, and correct

We ask:

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of
simply-typed λ-calculus

interpreted in a CCC

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

observational equivalence: iff whatever program of type
or we put them in, and have the
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

use adequate models to reason about
observational equivalence of programs

70

adequacy: [[P]] = [[Q]] ⟹ P ≃obs Q

Some example interpretations
languages with no effects

languages with printing,
global memory, exceptions

languages with local memory

languages with recursion

plain CCCs

CCCs with a (strong)
monad

presheaf
categories

order-enriched
categories

think: programs parametrised by
possible states of the memory

each recursive call goes up the order;

the whole loop is then a fixpoint

looping forever modelled by a bottom element

 models ‘how defined’ a function is≤

the monad describes the
effect, eg or

T
(−) + 1 S* × (−)

71

How should we think about programs?

fun divide(x, y):

return (x / y)

let b = flip(p);

return b;

a probability distribution on
{true, false}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x):

print “hello”;

return x;

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)

)

some measurable function (??)

72

Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs

3. Introduce differentiable programming

4. Explain the interpretation in Diff

73

cat

dog

high-dimensional
input

low-dimensional
output

74

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

https://www.youtube.com/watch?
v=5u4G23_OohI

76

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

can we write an algorithm to calculate derivatives exactly?

ie differentiate the function described by P

…and can we prove this is correct?
https://www.youtube.com/watch?

v=5u4G23_OohI

77

“forward AD”,
“reverse AD”, etc

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

can we write an algorithm to calculate derivatives exactly?

ie differentiate the function described by P

…and can we prove this is correct?
https://www.youtube.com/watch?

v=5u4G23_OohI

78

“forward AD”,
“reverse AD”, etc

differentiable programming

= languages where you can automatically

compute the derivative of any program

(TensorFlow, PyTorch, etc)

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

from the denotational semantics POV:

(1) is some smooth function

(2) aim: to algorithmically define a program

and prove that

[[P]] ℝn → ℝ
D(P)

[[D(P)]] = D([[P]])

essentially, using the chain rule

and “dual numbers”

 = a serious bottleneck

https://www.youtube.com/
watch?v=5u4G23_OohI

79

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

80

a natural suggestion:

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

81

a natural suggestion:

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

82

a natural suggestion:

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

83

a natural suggestion:

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

84

a natural suggestion:

Proving correctness of automatic differentiation

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

85

a natural suggestion:

from Correctness of Automatic
Differentiation via Diffeologies and

Categorical Gluing

Proving correctness of automatic differentiation
a natural suggestion:

(3) a program is meant to represent a smooth function P : real ℝn → ℝ
(4) define by induction on the simply-typed λ-calculus

and check
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

ie. we interpret in the category of cartesian spaces (=) and smooth mapsℝn for some n

but this category is not cartesian closed!

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

and even may contain lambdas,

eg

P : real
(λf . λx . f(x + x)) (exp)(2)

86

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

 = a serious bottleneck

https://www.youtube.com/
watch?v=5u4G23_OohI

can we write an algorithm to calculate derivatives exactly?

…and can we prove this is correct?

87

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI

88

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI

the natural semantic model for studying this problem

does not support higher-order functions

89

program with many parametersPhigh-dimensional
input

low-dimensional
outputeg a neural network with many layers, and different weights for the activation functions

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done
numerically, but it’s

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI

the natural semantic model for studying this problem

does not support higher-order functions

we need a CCC that supports some notion of derivative

90

The category of diffeological spaces
 is a nice semantic model! It has:

(1) cartesian closure = can model product and function types

(2) a full embedding

(3) coproducts

(4) initial algebras for endofunctors

Diff

CartSp → Diff = conservativity over the natural model,

good ways to interpret reals etc

 = can interpret sum types (~ disjoint unions)

= can interpret lists and similar inductive types

91

The strategy:

(a) interpret programs in

(b) prove that always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the algorithm at type

P Diff
[[P : real]] CartSp

D(−) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

92

The strategy:

(a) interpret programs in

(b) prove that always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the algorithm at type

P Diff
[[P : real]] CartSp

D(−) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

93

The strategy:

(a) interpret programs in

(b) prove that always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the algorithm at type

P Diff
[[P : real]] CartSp

D(−) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

so there’s a good
notion of derivative
for these programs

94

x

The strategy:

(a) interpret programs in

(b) prove that always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the algorithm at type

P Diff
[[P : real]] CartSp

D(−) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

need this to handle
open variables

so there’s a good
notion of derivative
for these programs

95

x

The strategy:

(a) interpret programs in

(b) prove that always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the algorithm at type

P Diff
[[P : real]] CartSp

D(−) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

need this to handle
open variables

so there’s a good
notion of derivative
for these programs

96

Why do denotational semanticists care about ?Diff
It provides a good semantic model for differentiable functional programming

…including function types

…which is conservative over the natural model in

So we can prove facts about derivatives of programs,

…including higher-order ones

…and thereby verify automatic differentiation algorithms

And, at type the interpretation coincides with the natural one

CartSp

real

97

Why do denotational semanticists care about ?Diff
It provides a good semantic model for differentiable functional programming

…including function types

…which is conservative over the natural model in

So we can prove facts about derivatives of programs,

…including higher-order ones

…and thereby verify automatic differentiation algorithms

And, at type the interpretation coincides with the natural one

CartSp

real

98

Why do denotational semanticists care about ?Diff
It provides a good semantic model for differentiable functional programming

…including function types

…which is conservative over the natural model in

So we can prove facts about derivatives of programs,

…including higher-order ones

…and thereby verify automatic differentiation algorithms

And, at type the interpretation coincides with the natural one

CartSp

real

99

 at work for semanticsDiff

(1) An analogy

(2) Adding recursion

(3) Cutting down the model: full abstraction

100

Probabilistic programming
Idea:

(1) programs express statistical models,

including conditioning on observations

(2) return the corresponding distribution (often via sampling algorithms)

101

Probabilistic programming

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)

)

Idea:

(1) programs express statistical models,

including conditioning on observations

(2) return the corresponding distribution (often via sampling algorithms)

How do we interpret probabilistic programs?

What is a good semantic model?

102

Probabilistic programming

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)

)

Idea:

(1) programs express statistical models,

including conditioning on observations

(2) return the corresponding distribution (often via sampling algorithms)

How do we interpret probabilistic programs?

What is a good semantic model?

probabilistic programs
‘should’ be interpreted by

measurable functions
but is not cartesian closed!Meas

= no way to interpret higher-order functions

103

Quasi-Borel spaces

 = category of concrete sheaves on cartesian manifolds

 = category of concrete sheaves on standard Borel spaces

Diff

QBS

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

always a quasi-topos, in particular a CCC

 provides a good semantic model for probabilistic programming,

just as provides a good semantic model for differentiable programming

QBS
Diff

104

 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

105

Adding recursion to simply-typed λ-calculus

plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

recursion in simply-typed λ-calculus:

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

106

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

recursion in simply-typed λ-calculus:

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

107

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

recursion in simply-typed λ-calculus:

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

108

fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

109

fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M

110

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

plus ↝ M (plus)
↝β λx . λy . if y == 0 text x else plus x (y − 1)

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M

111

[Scott, Plotkin,…]

Adding recursion to simply-typed λ-calculus

plus ↝ M (plus)
↝β λx . λy . if y == 0 text x else plus x (y − 1)

plus x y ↝ (λx . λy . if y == 0 then x else plus x (y − 1)) x y
↝ if y == 0 then x else plus x (y − 1)

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M

112

[Scott, Plotkin,…]

Adding recursion to the semantics

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M)) fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

114

fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

A Scott domain is a partially ordered set where

(1) every chain has a least upper bound

(2) for all

(X, ≤ , ⊥)
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

115

fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

[[fix(M)]] = least fixed point of [[M]]

A Scott domain is a partially ordered set where

(1) every chain has a least upper bound

(2) for all

(X, ≤ , ⊥)
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

by Tarski’s fixpoint theorem

116

fix(M) =βη M (fix(M))

[Scott, Plotkin,…]

Adding recursion to Diff

[[fix(M)]] = least fixed point of [[M]]

A Scott domain is a partially ordered set where

(1) every chain has a least upper bound

(2) for all

(X, ≤ , ⊥)
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

Also an analogous construction
for quasi-Borel spaces!
[Vakar, Kammar, Staton]

117

Adding recursion to Diff

[[fix(M)]] = least fixed point of [[M]]

A Scott domain is a partially ordered set where

(1) every chain has a least upper bound

(2) for all

(X, ≤ , ⊥)
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

an ω-diffeological space is

a diffeological space

…such that is a domain

…and is closed under least upper bounds of chains

(X, 𝒫X, ≤)
(X, 𝒫X)

(X, ≤)
𝒫U

X

def:

Also an analogous construction
for quasi-Borel spaces!
[Vakar, Kammar, Staton]

118

Adding recursion to Diff

[[fix(M)]] = least fixed point of [[M]]

A Scott domain is a partially ordered set where

(1) every chain has a least upper bound

(2) for all

(X, ≤ , ⊥)
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

an ω-diffeological space is

a diffeological space

…such that is a domain

…and is closed under least upper bounds of chains

(X, 𝒫X, ≤)
(X, 𝒫X)

(X, ≤)
𝒫U

X

def:

Also an analogous construction
for quasi-Borel spaces!
[Vakar, Kammar, Staton]

Can extend correctness
results for AD to languages

with recursion!

119

 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

[Vakar] [Vakar, Kammar, Staton]

120

Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]] is the model
fully abstract?

121

Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]]

In general, no!

 and can agree on all definable things, but still differ![[P]] [[Q]]

the semantics expresses richer behaviour than the syntax

is the model
fully abstract?

122

Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]]

In general, no!

 and can agree on all definable things, but still differ![[P]] [[Q]]

the semantics expresses richer behaviour than the syntax

Solution:
refine the model so every is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

is the model
fully abstract?

123

Cutting down Diff [Kammar, Katsumata, S.]

Given , we can't deduce P ≃ctx Q [[P]] = [[Q]]

Solution:
refine the model so every is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

↓

idea: internalise the idea that is definable

if it preserves the property of being definable

f

is the model
fully abstract?

124

Cutting down Diff [Kammar, Katsumata, S.]

Given , we can't deduce P ≃ctx Q [[P]] = [[Q]]

Solution:
refine the model so every is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

Diff

(new model)

↓

↓ preserves primitives and products,
but not exponentials

objects = diffeological spaces paired with a family of relations

morphisms = smooth maps preserving the relations

choose the class of relations intensionally

so maps preserving the relation are definable

idea: internalise the idea that is definable

if it preserves the property of being definable

f

is the model
fully abstract?

125

 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

[Vakar] [Vakar, Kammar, Staton]

[Kammar, Katsumata, S.]

126

Denotational semantics:

• idealised functional programming language

= simply-typed λ-calculus (+ extensions)

• interchangeability of programs

= observational equivalence

• interpret programs in CCCs (+ extensions)
finer than equality-on-arguments!

 is a good model for studying

automatic differentiation of programs

Diff

P ↦ D(P)

https://www.youtube.com/watch?
v=5u4G23_OohI127

