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(1) What questions does denotational semantics study?

(2) Why are cartesian closed categories so important?

(3) Where do diffeological spaces come in?



What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs?

gets interesting when programs have effects 
= interaction with the world
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let b = flip(p);

return b; return (heads) 

let b = flip(p);

if b == heads:


then return (heads);

else return (heads); 

return (heads) 

more efficient
not correct!

more efficient
correct!

When are programs interchangeable?
example 1

flips a coin with bias p ∈ [0,1]
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When are programs interchangeable?

fun double1(n):

set_memory location1 := n;   

return ( 


get_memory (location1) 

+  get_memory (location1)


);  

fun double2(n):

set_memory location1 := n

set_memory location2 := n

return ( 


get_memory (location1) 

+  get_memory (location2)


);  

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := 0 

… 

locationk := 0 

memory memory

double1(n)

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := n 

… 

locationk := 0 

memory memory

double2(n)

5

example 2



location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := 0 

… 

locationk := 0 

memory memory

double1(n)

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := n 

… 

locationk := 0 

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝
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∀n . double1(n) = double2(n)location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := 0 

… 

locationk := 0 

memory memory

double1(n)

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := n 

… 

locationk := 0 

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝
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example 2



∀n . double1(n) = double2(n)

doublei(2);

let n = get_memory location2;

if n > 0: 


then  return (false);

else return (true);

return (true); return (false);

i = 1 i = 2

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := 0 

… 

locationk := 0 

memory memory

double1(n)

location1 := 0 

location2 := 0 

… 

locationk := 0 

location1 := n 

location2 := n 

… 

locationk := 0 

memory memory

double2(n)

When are programs interchangeable?
equal as functions but not as programs!
 we can observe a difference in behaviour↝
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example 2

but can distinguish them by looking at memory:



When are programs interchangeable?

programs  and  are observationally equivalent 

if there’s no way to observe a difference in behaviour 

P Q

any program  containing  gives a result  

iff  gives the same result 

𝒞[P] P
𝒞[Q]
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs?
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs? depends on how 

programs run

generally harder than 
function equality

observational equivalence

depends on the 
language’s features

11



Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?
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Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?
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Observational equivalence in the real world

https://www.bbc.co.uk/news/uk-wales-61552865

how do you prove you’re not Banksy?

if there’s no way to tell them apart, they must be the same!
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs? depends on how 

programs run

generally harder than 
function equality

observational equivalence

depends on the 
language’s features
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How should we think about programs?
a function ℕ × ℕ → ℕfun add(x, y):


return (x + y)  



How should we think about programs?

fun divide(x, y):

return (x / y)  

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)  

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}
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How should we think about programs?

fun divide(x, y):

return (x / y)  

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)  

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x): 

print “hello”;

return x;     

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)



How should we think about programs?

fun divide(x, y):

return (x / y)  

let b = flip(p);

return b; 

a probability distribution on
{heads, tails}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)  

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x): 

print “hello”;

return x;     

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)
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How should we think about programs?

fun divide(x, y):

return (x / y)  

let b = flip(p);

return b; 

a probability distribution on
{heads, tails}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)  

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x): 

print “hello”;

return x;     

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)


)

some measurable function (??)
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs?

some kind 
of function?

need something beyond set-theoretic 
functions to model richer features!

depends on how 
programs run

uses ideas from:

- topology

- logic

- order theory 

generally harder than 
function equality

observational equivalence

depends on the 
language’s features
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) When are programs interchangeable?

(2) How should we think about programs?

The denotational semantics perspective:

(1) Assign every program   a meaning 

(2) Reason about equality of programs via their meaning

(3) The semantic model tells you what programs ‘really are’

P [[P]]
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Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs


3. Introduce differentiable programming

4. Explain the interpretation in Diff
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What is a program?

something modelled by a Turing machine

a kind of function

memory you can read 
to & write from

n1 = 0

n2 = 1

steps_taken = 0

while (steps_taken < 100) {


fib = n1 + n2

n1 = n2

n2 = fib

steps_taken = steps_taken + 1    


}   

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)  

Java, C, C++, …

OCaml, Haskell, 
Standard ML,…

• form functions 

• evaluate functions at arguments 

So a functional programming language lets you
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

f(x) = x3 + x2 + 1

function body 

bound variable

may not use , eg x f(x) = 3

the  matters: if 


  


then  but  is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg 
f(x) = 3y + x

every other 
variable is free
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

f(x) = x3 + x2 + 1

function body 

bound variable

f(3) = (x3 + x2 + 1)[x ↦ 3]
= 33 + 32 + 1

evaluating = substituting for bound variable

may not use , eg x f(x) = 3

the  matters: if 


  


then  but  is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg 
f(x) = 3y + x

every other 
variable is free
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

f(x) = x3 + x2 + 1

function body 

bound variable

f(3) = (x3 + x2 + 1)[x ↦ 3]
= 33 + 32 + 1

evaluating = substituting for bound variable

may not use , eg x f(x) = 3

the  matters: if 


  


then  but  is a constant function

x
g(y) = 3y3 + y2 + 1
h(y) = 3x3 + x2 + 1

f = g h

may contain free variables, eg 
f(x) = 3y + x

every other 
variable is free

in  whenever ℝ x ∈ ℝ

x ∈ ℝ

3 ∈ ℝ
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

function body

bound variable

 is a programx3 + x2 + 1
 is a program(x ↦ x3 + x2 + 1)

 is a program(x ↦ x3 + x2 + 1)

 is a program(x ↦ x3 + x2 + 1)(3)

 is a program3

(x ↦ x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other 
variable is free
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

function body

bound variable

 is a programx3 + x2 + 1
 is a programλx . x3 + x2 + 1

(λx . x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the λ-calculus

 is a programλx . x3 + x2 + 1

 is a program(λx . x3 + x2 + 1)(3)

 is a program3

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other 
variable is free
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you
function body

bound variable

 is a program of type x3 + x2 + 1 ℝ
 is a program of type λx . x3 + x2 + 1 ℝ → ℝ

(λx . x3 + x2 + 1)(3) ↝ 33 + 32 + 1
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

 is a program of type λx . x3 + x2 + 1 ℝ → ℝ
 is a program of type (λx . x3 + x2 + 1)(3) ℝ

 is a program of type 3 ℝ

(x ↦ (x3 + x2 + 1)(x)) ↝ (x ↦ x3 + x2 + 1)
extensionality: f = (x ↦ f(x))

every other 
variable is free
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you
function body

bound variable

 is a program of type P B
 is a program of type λx . P A → B

evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))

 is a program of type P A → B
 is a program of type P(Q) B

 is a program of type Q A

abstraction

application

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

every other 
variable is free

 is a variable of type x A

the simply-typed λ-calculus

(λx . P)(Q) ↝β P[x ↦ Q]
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How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you
function body

bound variable

 is a program of type P B
 is a program of type λx . P A → B

(λx . P)(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))

 is a program of type P A → B
 is a program of type P(Q) B

 is a program of type Q A

abstraction

application

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

every other 
variable is free

 is a variable of type x A

the simply-typed λ-calculus

 is a variable of type x A
 is a program of type x A
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P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus  is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))
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P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus  is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

f : A → B
f(x) : B

λx . f(x) : A → B

x : A

λf . λx . f(x) : (A → B) → (A → B)
eval : (A ⇒ B) × A → B

( f, x) ↦ f(x)

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))

34
via currying X → (A ⇒ B) ≅ (X × A) → B



P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound x

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus  is a programP : B

 is a programλx . P : A → Babstraction

 is a programP : A → B
 is a programP(Q) : B

 is a programQ : A
application

 is a variablex
 is a programx

How do we define functions?

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

f : A → B
f(x) : B

λx . f(x) : A → B

x : A

λf . λx . f(x) : (A → B) → (A → B)

eval : (A ⇒ B) × A → B
( f, x) ↦ f(x)

= running the program

P ↝η λx . P(x)
extensionality

 is a variablex : A

f = (x ↦ f (x))

λx . g( f x) : A → C
λf . λx . g( f x) : (A → B) → (A → C)

g : B → C f(x) : B
g(f(x)) : C

comp : (B ⇒ C) × (A ⇒ B) → (A ⇒ C)
(g, f ) ↦ g ∘ f

f : A → B x : A

λg . λf . λx . g( f x) : (B → C) → ((A → B) → (A → C))
35

via currying X → (A ⇒ B) ≅ (X × A) → B



Things we can’t do

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

Note there’s no restrictions on either rule!

 is a variablef
 is a programf

 is a programf( f )
 is a programλf . f( f )

(λf . f( f )) (λf . f( f )) ↝ (λf . f( f )) [f ↦ (λf . f f )]
= (λf . f( f )) (λf . f( f ))

Looping, recursion, …

1:= (λf . λf . f(x))
2:= (λf . λf . f( f x))

plus := (λm . λn . λf . λx . m f (n f x))

Encode Peano arithmetic

P(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

λx . f(x) = (x ↦ f(x))
the λ-calculus  is a programP

 is a programλx . P
abstraction

 is a programP
 is a programP(Q)

 is a programQ
application

 is a variablex
 is a programx

= running the program

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))
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Adding primitives 

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

flip() : bool
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Adding primitives 

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

What about  etc?plus, if
plus : ℕ × ℕ → ℕ

if : 2 × ℕ × ℕ → ℕ

if(i, n, m) = {n if i = 0
m if i = 1

flip() : bool
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Adding primitives 

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

n : nat
(n ∈ ℕ)

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

true : bool false : bool

What about  etc?plus, if
plus : ℕ × ℕ → ℕ

in general: introduce new types for new kinds of structure

if : 2 × ℕ × ℕ → ℕ

Option 1:  if(b, n, m) : nat (where b : bool, n : nat, m : nat)

Option 2: add a type to model ℕ × ℕ

if(i, n, m) = {n if i = 0
m if i = 1

flip() : bool

39



Adding product types 

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

y ∈ Y
(x, y) ∈ X × Y

p ∈ A1 × A2
πi(p) ∈ Ai

  x ∈ X
pair proj  (i = 1,2)

How does  behave in ?X × Y Set

πi(x1, x2) = xi

project out a pair  

p = (π1(p), π2(p))
extensionality: a pair is determined by its projections 
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Adding product types 

• form functions 

• evaluate functions at arguments 

A functional programming language lets you

λx . f(x) = (x ↦ f(x))
the simply-typed λ-calculus

P2 : A2

⟨P1, P2⟩ : A1 × A2

P : A1 × A2
πi(P) : Ai

  P1 : A1 pair proj  (i = 1,2)

How does  behave in simply-typed λ-calculus?X × Y

πi⟨P1, P2⟩ ↝β Pi

project out a pair  

P ↝η ⟨π1(P), π2(P)⟩
extensionality: a pair is determined by its projections 
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The simply-typed λ-calculus with products and primitives 

P2 : A2

⟨P1, P2⟩ : A1 × A2

P : A1 × A2
πi(P) : Ai

  P1 : A1 pair

proj  (i = 1,2)

πi(P1, P2) ↝β Pi

project out a pair  

P ↝η (π1(P), π2(P))
extensionality: a pair is determined 

by its projections 

P : B
λx . P : A → B

P : A → B
P(Q) : B

Q : A

  x : A
abstraction

application

(λx . P)(Q) ↝β P[x ↦ Q]
evaluating = substituting for bound variable

= running the program

P ↝η λx . P(x)
extensionality: f = (x ↦ f(x))

true : bool false : bool

plus : nat × nat → nat

if(b, n, m) : nat

n : nat
(n ∈ ℕ)

= the simplest (typed) 

functional programming language

plus⟨3, 2⟩ : nat
if(true, 3, 2) : nat

+ any others you might want!

flip() : bool

can also add sums / disjoint unions, lists, recursion, ….

+ a ‘unit’ type42



β-reduction = running the program 

(λp : nat × nat → bool . λt : nat × nat . if(p(t), 2, 3))(greater_than)(⟨5, 6⟩)

↝β (λt : nat × nat . if(greater_than(t), 2, 3))(⟨5, 6⟩)

↝β if(greater_than⟨5, 6⟩, 2, 3)
↝β 3



The magic of higher-order functions

eval : (A ⇒ B) × A → B
( f, x) ↦ f(x)

comp : (B ⇒ C) × (A ⇒ B) → (A ⇒ C)
(g, f ) ↦ g ∘ f

λp . (π1(p))(π2(p)) : (A → B) × A → B

λf . λx . (π1( f ))(π2( f )(x)) : ((B → C) × (A → B)) → (A → C)
π1( f ) : (B → C)
π2( f ) : (A → B)
π2( f )(x) : B
(π1( f ))(π2( f )(x)) : C
λx . (π1( f ))(π2( f )(x)) : A → C

π1(p) : (A → C)
π2(p) : A

P : ((nat → bool) × (nat → nat)) → nat acts on an arbitrary predicate and arbitrary endo-function on nat

higher-order functions = functions of type (A → B) → C
higher-order functions let you re-use code in a very efficient way

Note the observable behaviour is 
about when values get returned

this is what we care about!
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) How should we think about programs?

(2) When are programs interchangeable?

Two notions of equality:
(1) “equality as functions”

(2) “equality as programs”

= same behaviour no matter 

what program you put them into

terms in some version of simply-typed λ-calculus
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

for every program  with a ‘hole’ such that  or ,  we have C[ − ] C[P], C[Q] : nat C[P], C[Q] : bool
C[P] terminates with output V and effect E ⟺ C[Q] terminates with output V and effect E

(λx . P)(Q) =βη P[x ↦ Q]
P =βη λx . P(x)

πi(⟨P1, P2⟩) =βη Pi (i = 1,2)
P =βη ⟨π1(P), π2(P)⟩

P =βη Q ⟹ P ≃ctx Q
converse is false!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

  iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:
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What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

for every program  with a ‘hole’ such that  or ,  we have C[ − ] C[P], C[Q] : nat C[P], C[Q] : bool
C[P] terminates with output V and effect E ⟺ C[Q] terminates with output V and effect E

(λx . P)(Q) =βη P[x ↦ Q]
P =βη λx . P(x)

πi(⟨P1, P2⟩) =βη Pi (i = 1,2)
P =βη ⟨π1(P), π2(P)⟩

P =βη Q ⟹ P ≃ctx Q
converse is false!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

  iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:

47

Note the observable behaviour is 
about when values get returned

this is what we care about!



What does programming language theory study?
We ask: 


(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of simply-typed λ-calculus

Two schools:

(1) Syntactic techniques

(2) Semantic techniques

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

  iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:
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What does programming language theory study?
We ask: 


(1) How should we think about programs?

(2) When are programs interchangeable?

Terms in some version of simply-typed λ-calculus

Two schools:

(1) Syntactic techniques

(2) Semantic techniques

use the syntax and the  relations directly;

generally inductive arguments

↝

easy to refute observational equivalences; 
hard to prove them!

build semantic models 
and study those instead easier to prove observational equivalences; 

hard to refute them!

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

  iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:
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Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs


3. Introduce differentiable programming

4. Explain the interpretation in Diff
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Cartesian closed categories (CCCs)

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f )

⟨ f1, f2⟩ ( f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ( f )

eval ∘ ( f × A) f

Λ( f )(x) = f(x, _)

f̃(x, a) = f(x)(a)⟨ f1, f2⟩(x) = ( f1x, f2x)

a cartesian closed category  is a category  

with finite products 

and a right adjoint  for every 

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ ( − ) ( − ) × A

def:
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a cartesian closed category  is a category  

with finite products 

and a right adjoint  for every 

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ ( − ) ( − ) × A

def:

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f )

⟨ f1, f2⟩ ( f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ( f )

eval ∘ ( f × A) f

Λ( f ) = λx . f(x, _)

eval ∘ ( f × A) = λ(x, a) . f(x)(a)
⟨ f1, f2⟩ = λx . ( f1x, f2x)
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Cartesian closed categories (CCCs)

a cartesian closed category  is a category  

with finite products 

and a right adjoint  for every 

(ℂ, × ,1, ⇒) ℂ
(×,1)

A ⇒ ( − ) ( − ) × A

def:

ℂ(X, A1 × A2) ≅ ℂ(X, A1) × ℂ(X, A2)
f ↦ (π1 ∘ f, π2 ∘ f )

⟨ f1, f2⟩ ( f1, f2)

ℂ(X × A, B) ≅ ℂ(X, A ⇒ B)
f ↦ Λ( f )

eval ∘ ( f × A) f

Λ( f ) = λx . f(x, _)
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eval = λ( f, x) . f(x) application

abstraction

projections

pairing



Semantic interpretation

simply-typed 
λ-calculus

cartesian closed 
category ℂ

[[_]]
semantic interpretation

type A object [[A]]

program P : A morphism with codomain [[A]]

product type

exponential type

product object

exponential object

pairing

projections

abstraction

application

pairing

projections

currying  

evaluating at arguments

Λ(_)



Meanings for types in a CCC

Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B
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Meanings for types in a CCC

Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B

[[nat]] := ℕ
[[bool]] := 2

[[A × B]] := [[A]] × [[B]]
[[A → B]] := ([[A]] ⇒ [[B]])

[[nat → bool]] := (ℕ ⇒ 2)
[[bool → bool]] := (2 ⇒ 2)

⋮
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Types ∋ A, B ::= nat ∣ bool ∣ A × B ∣ A → B

[[nat]] := ℕ
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[[A → B]] := ([[A]] ⇒ [[B]])

[[nat → bool]] := (ℕ ⇒ 2)
[[bool → bool]] := (2 ⇒ 2)

⋮
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Meanings for terms in a CCC
handling free variables

no free variables

plus : nat × nat → nat
assigns something of type  whenever we give nat P : nat × nat

so  is a map ; 
equivalently, a map 

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])
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Meanings for terms in a CCC
handling free variables

no free variables  freeb, n and m

plus : nat × nat → nat
assigns something of type  whenever we give nat P : nat × nat

so  is a map ; 
equivalently, a map 

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type  whenever we give nat b : bool, n : nat and m : nat
so  is a map  [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]
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Meanings for terms in a CCC

 with free variables  has 
interpretation 

P : B (xi : Ai)i=1,…,n
[[P]] : ∏n

i=1 [[Ai]] → [[B]]

handling free variables
no free variables  freeb, n and m

plus : nat × nat → nat
assigns something of type  whenever we give nat P : nat × nat

so  is a map ; 
equivalently, a map 

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type  whenever we give nat b : bool, n : nat and m : nat
so  is a map  [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]

assigns  to each ai ∈ [[Ai]] xi : Ai
eg [[if]](0,2,3) = 2
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Meanings for terms

 with free variables  has 
interpretation 

P : B (xi : Ai)i=1,…,n
[[P]] : ∏n

i=1 [[Ai]] → [[B]]

handling free variables
no free variables  freeb, n and m

plus : nat × nat → nat
assigns something of type  whenever we give nat P : nat × nat

so  is a map ; 
equivalently, a map 

[[plus]] [[nat]] × [[nat]] → [[nat]]
1 → (([[nat]] × [[nat]]) ⇒ [[nat]])

if(b, n, m) : nat
assigns something of type  whenever we give nat b : bool, n : nat and m : nat
so  is a map  [[if(b, n, m)]] [[bool]] × [[nat]] × [[nat]] → [[nat]]

assigns  to each ai ∈ [[Ai]] xi : Ai
eg [[if]](0,2,3) = 2

for  with no free variables, 

  

P : B
[[P]] : 1 → [[B]]

so eg   is identified with an element of P : A → B ([[A]] ⇒ [[B]])
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Meanings for closed terms in Set
 with free variables  

has interpretation 
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation  for each primitive [[c]] c

For  with no free variables, :P : B [[P]] ∈ [[B]]

[[πi(P)]]( ⃗a ) = (ith projection out [[P]]( ⃗a ))
[[⟨P1, P2⟩]]( ⃗a ) = ([[P1]]( ⃗a ), [[P2]]( ⃗a ))

[[P(Q)]]( ⃗a ) = ([[P]]( ⃗a )) ([[Q]]( ⃗a ))
[[λx . P]]( ⃗a ) = λb . [[P]]( ⃗a , b)
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Meanings for terms in Set
 with free variables  

has interpretation 
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation  for each primitive [[c]] c

For  


assigning  to each free  in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P
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Meanings for terms in Set
 with free variables  
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i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation  for each primitive [[c]] c

For  


assigning  to each free  in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P

[[πi(P)]]( ⃗a ) = (ith projection out [[P]]( ⃗a ))
[[⟨P1, P2⟩]]( ⃗a ) = ([[P1]]( ⃗a ), [[P2]]( ⃗a ))

65

∈ [[B1]] × [[B2]]

∈ [[Bi]]



Meanings for terms in Set
 with free variables  

has interpretation 
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation  for each primitive [[c]] c

For  


assigning  to each free  in :

⃗a ∈ ∏n
i=1 [[Ai]]
ai ∈ [[Ai]] xi : Ai P

[[πi(P)]]( ⃗a ) = (ith projection out [[P]]( ⃗a ))
[[⟨P1, P2⟩]]( ⃗a ) = ([[P1]]( ⃗a ), [[P2]]( ⃗a ))

[[P(Q)]]( ⃗a ) = ([[P]]( ⃗a )) ([[Q]]( ⃗a ))
[[λx . P]]( ⃗a ) = λb . [[P]]( ⃗a , b)
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Meanings for terms
 with free variables  

has interpretation 
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

Fix an interpretation  for each primitive [[c]] c
Then:

[[πi(P) : Bi]] = πi ∘ [[P : B1 × B2]]
[[⟨P1, P2⟩ : B1 × B2]] = ⟨[[P1 : B1]], [[P2 : B2]]⟩

[[P(Q) : C]] = eval ∘ ⟨[[P : B → C]], [[Q : B]]⟩
[[λx . P : B → C]] = Λ([[P : C]]) Λ( f ) = λx . f(x, _)

eval ∘ ( f × A) = λ(x, a) . f(x)(a)

⟨ f1, f2⟩(x) = ( f1x, f2x)
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Soundness of the interpretation
 with free variables  

has interpretation 
P : B (xi : Ai)i=1,…,n

[[P]] : ∏n
i=1 [[Ai]] → [[B]]

assigns  to each ai ∈ [[Ai]] xi : Ai

68

for any CCC  and any choice of base types and constants,
ℂ
P =βη Q ⟹ [[P]] = [[Q]]

in an adequate model, [[P]] = [[Q]] ⟹ P ≃obs Q

in fact, simply-typed λ-calculus modulo  is 

a sound and complete logic for CCCs

=βη



What does programming language theory study?

We want programs that are: 

efficient, fast, and correct

We ask: 

(1) How should we think about programs?

(2) When are programs interchangeable?

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

  iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

observational equivalence:
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What does denotational semantics study?
We want programs that are: 


efficient, fast, and correct

We ask: 

(1) How should we think about programs?

(2) When are programs interchangeable?

terms in some version of 
simply-typed λ-calculus


interpreted in a CCC

Two notions of equality:
βη-equality : the congruence generated by =βη ↝β ∪ ↝η

observational equivalence:   iff whatever program  of type  
or  we put them in,  and  have the 
same behaviour

P ≃obs Q C[_] bool
nat C[P] C[Q]

use adequate models to reason about 
observational equivalence of programs 

70

adequacy: [[P]] = [[Q]] ⟹ P ≃obs Q



Some example interpretations
languages with no effects 

languages with printing, 
global memory, exceptions

languages with local memory

languages with recursion

plain CCCs

CCCs with a (strong) 
monad

presheaf 
categories

order-enriched 
categories

think: programs parametrised by 
possible states of the memory

each recursive call goes up the order;

the whole loop is then a fixpoint 

looping forever modelled by a bottom element 

 models ‘how defined’ a function is≤

the monad  describes the 
effect, eg  or 

T
( − ) + 1 S* × ( − )
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How should we think about programs?

fun divide(x, y):

return (x / y)  

let b = flip(p);

return b; 

a probability distribution on
{true, false}

a function ℕ × ℕ → ℕfun add(x, y):

return (x + y)  

a function ℤ × ℤ≠0 → ℚ
a function ℤ × ℤ → ℚ + {fail}

fun print_and_return(x): 

print “hello”;

return x;     

a function ℕ → {a, b, …, z}* × ℕ
x ↦ (hello, x)

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)


)

some measurable function (??)

72



Coming up next

1. Introduce an idealised functional programming language

2. Explain its semantic interpretation in CCCs


3. Introduce differentiable programming

4. Explain the interpretation in Diff
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cat

dog

high-dimensional 
input

low-dimensional 
output
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outputeg a neural network with many layers, and different weights for the activation functions 



program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

https://www.youtube.com/watch?
v=5u4G23_OohI
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

can we write an algorithm to calculate derivatives exactly?

ie differentiate the function described by P

…and can we prove this is correct?
https://www.youtube.com/watch?

v=5u4G23_OohI
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

can we write an algorithm to calculate derivatives exactly?

ie differentiate the function described by P

…and can we prove this is correct?
https://www.youtube.com/watch?

v=5u4G23_OohI
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“forward AD”, 
“reverse AD”, etc

differentiable programming 

= languages where you can automatically 


compute the derivative of any program

(TensorFlow, PyTorch, etc)



program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

from the denotational semantics POV:

(1)  is some smooth function 

(2) aim: to algorithmically define a program  


and prove that  

[[P]] ℝn → ℝ
D(P)

[[D(P)]] = D([[P]])

essentially, using the chain rule 

and “dual numbers” 

 = a serious bottleneck

https://www.youtube.com/
watch?v=5u4G23_OohI
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Proving correctness of automatic differentiation

(3) a program  is meant to represent a smooth function P : real ℝn → ℝ
(4) define  by induction on the simply-typed λ-calculus 


and check 
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real
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Proving correctness of automatic differentiation

(3) a program  is meant to represent a smooth function P : real ℝn → ℝ
(4) define  by induction on the simply-typed λ-calculus 


and check 
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc
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from Correctness of Automatic 
Differentiation via Diffeologies and 

Categorical Gluing 




Proving correctness of automatic differentiation
a natural suggestion:

(3) a program  is meant to represent a smooth function P : real ℝn → ℝ
(4) define  by induction on the simply-typed λ-calculus 


and check 
D(P)

[[D(P)]] = D([[P]])

(2) take simply-typed λ-calculus + primitives for real numbers etc

ie. we interpret in the category of cartesian spaces (= ) and smooth mapsℝn for some n

but this category is not cartesian closed!

[Huot, Staton, Vakar]

(1) we only care about the programs returning a value, ie those of type real

and even  may contain lambdas, 

eg  

P : real
(λf . λx . f(x + x)) (exp)(2)
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

 = a serious bottleneck

https://www.youtube.com/
watch?v=5u4G23_OohI

can we write an algorithm to calculate derivatives exactly?

…and can we prove this is correct?
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem 

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem 

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI

the natural semantic model for studying this problem 

does not support higher-order functions
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program  with many parametersPhigh-dimensional 
input

low-dimensional 
outputeg a neural network with many layers, and different weights for the activation functions 

aim: optimise the parameters for P
so that, eg, it classifies cats as cats as often as possible

can be done 
numerically, but it’s 

hard in general!

ie differentiate the function described by P

the natural semantic model for studying this problem 

does not support higher-order functions

can we write an algorithm to calculate derivatives exactly?
…and can we prove this is correct?

https://www.youtube.com/
watch?v=5u4G23_OohI

the natural semantic model for studying this problem 

does not support higher-order functions

we need a CCC that supports some notion of derivative
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The category of diffeological spaces
 is a nice semantic model! It has:


(1) cartesian closure = can model product and function types


(2) a full embedding  


(3) coproducts


(4) initial algebras for endofunctors

Diff

CartSp → Diff = conservativity over the natural model,

good ways to interpret reals etc 


 = can interpret sum types (~ disjoint unions)

 

= can interpret lists and similar inductive types
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The strategy:

(a) interpret programs  in 

(b) prove that  always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the  algorithm at type 

P Diff
[[P : real]] CartSp

D( − ) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]
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P Diff
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Proving correctness of automatic differentiation
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The strategy:

(a) interpret programs  in 

(b) prove that  always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the  algorithm at type 

P Diff
[[P : real]] CartSp

D( − ) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

so there’s a good 
notion of derivative 
for these programs
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The strategy:

(a) interpret programs  in 

(b) prove that  always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the  algorithm at type 

P Diff
[[P : real]] CartSp

D( − ) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

need this to handle 
open variables

so there’s a good 
notion of derivative 
for these programs
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(a) interpret programs  in 

(b) prove that  always lands in , even if it has lambdas

(c) prove a correctness property for differentiation, at every type

(d) deduce correctness of the  algorithm at type 

P Diff
[[P : real]] CartSp

D( − ) real

Proving correctness of automatic differentiation
[Huot, Staton, Vakar]

need this to handle 
open variables

so there’s a good 
notion of derivative 
for these programs
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Why do denotational semanticists care about ?Diff
It provides a good semantic model for differentiable functional programming


…including function types

…which is conservative over the natural model in 


So we can prove facts about derivatives of programs, 

…including higher-order ones

…and thereby verify automatic differentiation algorithms


And, at type  the interpretation coincides with the natural one

CartSp

real
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Why do denotational semanticists care about ?Diff
It provides a good semantic model for differentiable functional programming


…including function types

…which is conservative over the natural model in 


So we can prove facts about derivatives of programs, 

…including higher-order ones

…and thereby verify automatic differentiation algorithms


And, at type  the interpretation coincides with the natural one

CartSp

real
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 at work for semanticsDiff

(1) An analogy

(2) Adding recursion

(3) Cutting down the model: full abstraction
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Probabilistic programming
Idea: 


(1) programs express statistical models, 

including conditioning on observations


(2) return the corresponding distribution (often via sampling algorithms)

101



Probabilistic programming

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)


)

Idea: 

(1) programs express statistical models, 


including conditioning on observations

(2) return the corresponding distribution (often via sampling algorithms)

How do we interpret probabilistic programs? 

What is a good semantic model?
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Probabilistic programming

normalise(

let x = sample(bernoulli(0.8));

let r = (if x then 10 else 3);

observe 0.45 from exponential(r)

return(x)


)

Idea: 

(1) programs express statistical models, 


including conditioning on observations

(2) return the corresponding distribution (often via sampling algorithms)

How do we interpret probabilistic programs? 

What is a good semantic model?

probabilistic programs 
‘should’ be interpreted by 

measurable functions
but  is not cartesian closed!Meas

= no way to interpret higher-order functions

103



Quasi-Borel spaces

 = category of concrete sheaves on cartesian manifolds


 = category of concrete sheaves on standard Borel spaces

Diff

QBS

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

always a quasi-topos, in particular a CCC

 provides a good semantic model for probabilistic programming, 

just as  provides a good semantic model for differentiable programming

QBS
Diff
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 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]
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Adding recursion to simply-typed λ-calculus

plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

recursion in simply-typed λ-calculus:

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))
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recursion in simply-typed λ-calculus:

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))
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Adding recursion to simply-typed λ-calculus

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N
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Adding recursion to simply-typed λ-calculus

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M
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Adding recursion to simply-typed λ-calculus

plus ↝ M (plus)
↝β λx . λy . if y == 0 text x else plus x (y − 1)

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M
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Adding recursion to simply-typed λ-calculus

plus ↝ M (plus)
↝β λx . λy . if y == 0 text x else plus x (y − 1)

plus x y ↝ (λx . λy . if y == 0 then x else plus x (y − 1)) x y
↝ if y == 0 then x else plus x (y − 1)

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))plus(x,0) = x
plus(x, y + 1) = plus(x, y) + 1

 is the least map satisfyingplus : N × N → N

plus := fix(λp . λx . λy . if y == 0 then x else p x (y − 1))
M
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Adding recursion to the semantics

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M)) fix(M) =βη M (fix(M))

[Scott, Plotkin,…]



Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))
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Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

A Scott domain is a partially ordered set  where

(1) every chain  has a least upper bound

(2)  for all 

(X, ≤ , ⊥ )
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x
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Adding recursion to the semantics

Standard semantics = ω-complete partial orders with a bottom element

P : A → A
fix(M) : A

fix(M) ↝ M (fix(M))

[[fix(M)]] =  least fixed point of [[M]]

A Scott domain is a partially ordered set  where

(1) every chain  has a least upper bound

(2)  for all 

(X, ≤ , ⊥ )
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

by Tarski’s fixpoint theorem
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Adding recursion to Diff

[[fix(M)]] =  least fixed point of [[M]]

A Scott domain is a partially ordered set  where

(1) every chain  has a least upper bound

(2)  for all 

(X, ≤ , ⊥ )
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

Also an analogous construction 
for quasi-Borel spaces!
[Vakar, Kammar, Staton]
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Adding recursion to Diff

[[fix(M)]] =  least fixed point of [[M]]

A Scott domain is a partially ordered set  where

(1) every chain  has a least upper bound

(2)  for all 

(X, ≤ , ⊥ )
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

an ω-diffeological space  is 

a diffeological space  

…such that  is a domain 

…and  is closed under least upper bounds of chains   

(X, 𝒫X, ≤ )
(X, 𝒫X)

(X, ≤ )
𝒫U

X

def:

Also an analogous construction 
for quasi-Borel spaces!
[Vakar, Kammar, Staton]
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Adding recursion to Diff

[[fix(M)]] =  least fixed point of [[M]]

A Scott domain is a partially ordered set  where

(1) every chain  has a least upper bound

(2)  for all 

(X, ≤ , ⊥ )
x0 ≤ x1 ≤ ⋯ ≤ xn ≤ ⋯

⊥ ≤ x x

Forms a CCC, and every map has a least fixed point
 such that x f(x) = x

[Vakar]

an ω-diffeological space  is 

a diffeological space  

…such that  is a domain 

…and  is closed under least upper bounds of chains   

(X, 𝒫X, ≤ )
(X, 𝒫X)

(X, ≤ )
𝒫U

X

def:

Also an analogous construction 
for quasi-Borel spaces!
[Vakar, Kammar, Staton]

Can extend correctness 
results for AD to languages 

with recursion!
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 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

[Vakar] [Vakar, Kammar, Staton]
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Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]] is the model 
fully abstract?
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Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]]

In general, no!

 and  can agree on all definable things, but still differ![[P]] [[Q]]

the semantics expresses richer behaviour than the syntax

is the model 
fully abstract?
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Cutting down Diff [Kammar, Katsumata, S.]

Given , can we deduce ?P ≃ctx Q [[P]] = [[Q]]

In general, no!

 and  can agree on all definable things, but still differ![[P]] [[Q]]

the semantics expresses richer behaviour than the syntax

Solution:
refine the model so every  is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

is the model 
fully abstract?
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Cutting down Diff [Kammar, Katsumata, S.]

Given , we can't deduce P ≃ctx Q [[P]] = [[Q]]

Solution:
refine the model so every  is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

↓

idea: internalise the idea that  is definable 

if it preserves the property of being definable

f

is the model 
fully abstract?
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Cutting down Diff [Kammar, Katsumata, S.]

Given , we can't deduce P ≃ctx Q [[P]] = [[Q]]

Solution:
refine the model so every  is definablef : [[A]] → [[B]]
difficult bit: doing this for exponentials

Diff

(new model)

↓

↓ preserves primitives and products, 
but not exponentials

objects = diffeological spaces paired with a family of relations

morphisms = smooth maps preserving the relations

choose the class of relations intensionally  

so maps preserving the relation are definable

idea: internalise the idea that  is definable 

if it preserves the property of being definable

f

is the model 
fully abstract?
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 at work for semanticsDiff

(1) An analogy: quasi-Borel spaces

(2) Adding recursion

(3) Cutting down the model: full abstraction

[Heunen, Kammar, Moss, Scibior, Staton, Vakar, Yang]

[Vakar] [Vakar, Kammar, Staton]

[Kammar, Katsumata, S.]
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Denotational semantics:


• idealised functional programming language 

= simply-typed λ-calculus (+ extensions) 


• interchangeability of programs 

= observational equivalence


• interpret programs in CCCs (+ extensions) 
finer than equality-on-arguments!

 is a good model for studying 

automatic differentiation of programs  


Diff

P ↦ D(P)

https://www.youtube.com/watch?
v=5u4G23_OohI127


