Diffeological spaces as a model for differentiable programs

A tutorial

Philip Saville, University of Oxford

these slides available at philipsaville.co.uk
(1) What questions does denotational semantics study?
(2) Why are cartesian closed categories so important?
(3) Where do diffeological spaces come in?

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?
gets interesting when programs have effects
= interaction with the world

When are programs interchangeable?
 example 1

When are programs interchangeable?

example 2

```
fun double}\mp@subsup{}{1}{(n):
    set_memory location_ := n;
    return (
        get_memory (location_)
            + get_memory (location}
);
```


fun double ${ }_{2}(n)$:

```
set_memory location_ := n
set_memory location_:= n
return (
    get_memory (location_)
    + get_memory (location)
);
```


When are programs interchangeable?

equal as functions but not as programs! \leadsto we can observe a difference in behaviour

When are programs interchangeable?

equal as functions but not as programs! \leadsto we can observe a difference in behaviour

$$
\forall \mathrm{n} . \operatorname{double}_{1}(\mathrm{n})=\operatorname{double}_{2}(\mathrm{n})
$$

When are programs interchangeable?
 example 2

equal as functions but not as programs! \leadsto we can observe a difference in behaviour

$$
\forall \mathrm{n} . \operatorname{double}_{1}(\mathrm{n})=\operatorname{double}_{2}(\mathrm{n})
$$

but can distinguish them by looking at memory:

$$
\text { double }_{\mathrm{i}}(2) ;
$$

let $\mathrm{n}=$ get_memory locatioñ; if $\mathrm{n}>0$:
then return (false); else return (true);

return (true);
return (false);

When are programs interchangeable?

programs P and Q are observationally equivalent
if there's no way to observe a difference in behaviour
any program $\mathscr{C}[P]$ containing P gives a result iff $\mathscr{C}[Q]$ gives the same result

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

What does programming language theory study?

We want programs that are: efficient, fast, and correct
observational equivalence
We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

Observational equivalence in the real world

how do you prove you're not Banksy?

A town councillor has resigned, blaming people who falsely accused him of being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous" claims were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the work" of a councillor.

Mr Gannon has since made an "I am not Banksy" badge to avoid any confusion and said he would now be returning to his former role of community artist.

He said the allegations meant people were "asking me to prove who I am not and that's almost impossible to do".

Observational equivalence in the real world

how do you prove you're not Banksy?

A town councillor has resigned, blaming people who falsely accused him of being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous" claims were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the work" of a councillor.

Mr Gannon has since made an "I am not Banksy" badge to avoid any confusion and said he would now be returning to his former role of community artist.

> He said the allegations meant people were "asking me to prove who I am not and that's almost impossible to do".
https://www.bbc.co.uk/news/uk-wales-61552865

Observational equivalence in the real world

how do you prove you're not Banksy?

A town councillor has resigned, blaming people who falsely accused him of being the world famous artist Banksy.

Pembroke Dock councillor William Gannon said the "quite ridiculous" claims were made on several social media pages.

In his resignation letter he claimed this was "undermining my ability to do the work" of a councillor.

Mr Gannon has since made an "I am not Banksy" badge to avoid any confusion and said he would now be returning to his former role of community artist.

```
He said the allegations meant people were "asking me to prove who I am not and that's almost impossible to do".
```

https://www.bbc.co.uk/news/uk-wales-61552865

if there's no way to tell them apart, they must be the same!

What does programming language theory study?

We want programs that are:
efficient, fast, and correct
observational equivalence
We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

How should we think about programs?

fun add (x, y) :
return $(x+y)$

a function $\quad \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

How should we think about programs?

fun add (x, y): return $(x+y)$
fun divide(x, y): return (x / y)

How should we think about programs?

```
fun add(x, y):
    return (x+y)
fun divide(x, y):
    return (x/y)
fun print_and_return(x):
    print "hello";
    return x;
```


How should we think about programs?

```
fun add ( \(\mathrm{x}, \mathrm{y}\) ):
    return \((x+y)\)
fun divide( \(\mathrm{x}, \mathrm{y}\) ):
    return ( \(\mathrm{x} / \mathrm{y}\) )
fun print_and_return(x):
    print "hello";
    return \(x\);
let \(\mathrm{b}=\mathrm{flip}(\mathrm{p})\);
return b;
```


How should we think about programs?

```
fun add(x, y):
    return (x+y)
fun divide(x, y):
    return (x/y)
fun print_and_return(x):
    print "hello";
    return x;
let b = flip(p);
return b;
normalise(
    let x = sample(bernoulli(0.8));
    let r = (if x then 10 else 3);
    observe 0.45 from exponential(r)
    return(x)
)
a function \(\quad \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}\)
a function \(\mathbb{Z} \times \mathbb{Z}_{\neq 0} \rightarrow \mathbb{Q}\)
a function \(\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}+\{\) fail \(\}\)
a function \(\mathbb{N} \rightarrow\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}^{*} \times \mathbb{N}\)
\(x \mapsto(\) hello,\(x)\)
a probability distribution on \{heads, tails \}
some measurable function (??)

\section*{What does programming language theory study?}

We want programs that are: efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

\section*{What does programming language theory study?}

We want programs that are:
efficient, fast, and correct

We ask:
(1) When are programs interchangeable?
(2) How should we think about programs?

The denotational semantics perspective:
(1) Assign every program \(P\) a meaning \([P]\)
(2) Reason about equality of programs via their meaning
(3) The semantic model tells you what programs 'really are'

\section*{Coming up next}
1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs
3. Introduce differentiable programming
4. Explain the interpretation in Diff

\section*{What is a program?}

something modelled by a Turing machine
memory you can read to \& write from

\(\mathrm{nl}=0\)
n2 = 1
steps_taken = 0
while (steps_taken < 100) fib \(=n 1+n 2\)
\(\mathrm{n} 1=\mathrm{n} 2\)
n2 = fib
steps_taken = steps_taken + 1


\footnotetext{
So a functional programming language lets you
- form functions
- evaluate functions at arguments
}

\section*{How do we define functions?}

\author{
function body
}
may not use \(x\), eg \(f(x)=3\)
may contain free variables, eg \(f(x)=3 y+x\)

\section*{A functional programming language lets you}
- form functions
- evaluate functions at arguments
\[
f(x)=x^{3}+x^{2}+1
\]
bound variable
\[
\begin{gathered}
\text { the } x \text { matters: if } \\
g(y)=3 y^{3}+y^{2}+1 \\
h(y)=3 x^{3}+x^{2}+1
\end{gathered}
\]
then \(f=g\) but \(h\) is a constant function

\section*{How do we define functions?}
function body
may not use \(x, \operatorname{eg} f(x)=3\)
may contain free variables, eg
\(f(x)=3 y+x\)

A functional programming language lets you
- form functions
- evaluate functions at arguments
\[
f(x)=x^{3}+x^{2}+1
\]
bound variable
evaluating \(=\) substituting for bound variable

> the \(x\) matters: if
> \(g(y)=3 y^{3}+y^{2}+1\)
> \(h(y)=3 x^{3}+x^{2}+1\)
\[
\begin{aligned}
f(3) & =\left(x^{3}+x^{2}+1\right)[x \mapsto 3] \\
& =3^{3}+3^{2}+1
\end{aligned}
\]

\section*{How do we define functions?}

\author{
function body
}
may not use \(x, \operatorname{eg} f(x)=3\)
may contain free variables, eg

A functional programming language lets you
- form functions
- evaluate functions at arguments
\[
f(x)=x^{3}+x^{2}+1 \text { in } \mathbb{R} \text { whenever } x \in \mathbb{R}
\]
bound variable \(x \in \mathbb{R}\)
evaluating \(=\) substituting for bound variable
\[
\begin{gathered}
\text { the } x \text { matters: if } \\
g(y)=3 y^{3}+y^{2}+1 \\
h(y)=3 x^{3}+x^{2}+1
\end{gathered}
\]
then \(f=g\) but \(h\) is a constant function
every other
variable is free
\[
\begin{aligned}
f(3) & =\left(x^{3}+x^{2}+1\right)[x \mapsto 3] \\
& =3^{3}+3^{2}+1
\end{aligned}
\]

\section*{How do we define functions?}
\(x^{3}+x^{2}+1\) is a program
\(\left(x \mapsto x^{3}+x^{2}+1\right)\) is a program
bound variable
every other variable is free
\[
\frac{\left(x \mapsto x^{3}+x^{2}+1\right) \text { is a program } \quad 3 \text { is a program }}{\left(x \mapsto x^{3}+x^{2}+1\right)(3) \text { is a program }}
\]
evaluating = substituting for bound variable
\[
\begin{gathered}
\left(x \mapsto x^{3}+x^{2}+1\right)(3) \leadsto 3^{3}+3^{2}+1 \\
\quad \text { extensionality: } f=(x \mapsto f(x)) \\
\left(x \mapsto\left(x^{3}+x_{28}^{2}+1\right)(x)\right) \leadsto\left(x \mapsto x^{3}+x^{2}+1\right)
\end{gathered}
\]

\section*{How do we define functions?}
the \(\lambda\)-calculus
\(\lambda x . f(x)=(x \mapsto f(x))\)
\[
\frac{x^{3}+x^{2}+1 \text { is a program }}{\lambda x . x^{3}+x^{2}+1 \text { is a program }}
\]
bound variable
every other variable is free
\[
\lambda x \cdot x^{3}+x^{2}+1 \text { is a program } \quad 3 \text { is a program }
\]
\[
\left(\lambda x \cdot x^{3}+x^{2}+1\right)(3) \text { is a program }
\]
\[
\begin{gathered}
\text { evaluating }=\text { substituting for bound variable } \\
\left(\lambda x \cdot x^{3}+x^{2}+1\right)(3) \leadsto 3^{3}+3^{2}+1 \\
\text { extensionality: } f=(x \mapsto f(x)) \\
\left(x \mapsto\left(x^{3}+x_{29}^{2}+1\right)(x)\right) \leadsto\left(x \mapsto x^{3}+x^{2}+1\right)
\end{gathered}
\]

\section*{How do we define functions?}
the simply-typed \(\lambda\)-calculus
\(\lambda x . f(x)=(x \mapsto f(x))\)
function body
\(x^{3}+x^{2}+1\) is a program of type \(\mathbb{R}\)
- form functions
- evaluate functions at arguments
\(\lambda x \cdot x^{3}+x^{2}+1\) is a program of type \(\mathbb{R} \rightarrow \mathbb{R}\)
bound variable
variable is free
\[
\frac{\lambda x \cdot x^{3}+x^{2}+1 \text { is a program of type } \mathbb{R} \rightarrow \mathbb{R} \quad 3 \text { is a program of type } \mathbb{R}}{\left(\lambda x \cdot x^{3}+x^{2}+1\right)(3) \text { is a program of type } \mathbb{R}}
\]
evaluating \(=\) substituting for bound variable
\(\left(\lambda x \cdot x^{3}+x^{2}+1\right)(3) \leadsto 3^{3}+3^{2}+1\)
\(\begin{aligned} & \text { extensionality: } f=(x \mapsto f(x)) \\ &\left(x \mapsto\left(x^{3}+x_{30}^{2}+1\right)(x)\right) \leadsto\left(x \mapsto x^{3}+x^{2}+1\right)\end{aligned}\)

\section*{How do we define functions?}
```

the simply-typed }\lambda\mathrm{ -calculus
\lambdax.f(x)=(x\mapstof(x))
function body
P is a program of type B x is a variable of type }

```
\lambdax.P is a program of type A->B
```

```
```

\lambdax.P is a program of type A->B

```
```

bound variable
every other
variable is free
$\frac{P \text { is a program of type } A \rightarrow B \quad Q \text { is a program of type } A}{P(Q) \text { is a program of type } B}$
evaluating = substituting for bound variable
$(\lambda x . P)(Q) \sim_{\beta} P[x \mapsto Q]$ extensionality: $f=(x \mapsto f(x))$

$$
P \sim_{\eta} \lambda x . P(x)
$$

How do we define functions?

the simply-typed $\boldsymbol{\lambda}$-calculus
$\lambda x . f(x)=(x \mapsto f(x))$
$\lambda x . f(x)=(x \mapsto f(x))$
function body
P is a program of type $B \quad x$ is a variable of type A

- evaluate functions at arguments
$\lambda x . P$ is a program of type $A \rightarrow B$
abstraction
bound variable
every other
variable is free
$\frac{P \text { is a program of type } A \rightarrow B \quad Q \text { is a program of type } A}{P(Q) \text { is a program of type } B}$
evaluating = substituting for bound variable
$(\lambda x . P)(Q) \sim_{\beta} P[x \mapsto Q]$ extensionality: $f=(x \mapsto f(x))$

$$
P \sim_{\eta} \lambda x . P(x)
$$

x is a variable of type A
x is a program of type A

How do we define functions?

How do we define functions?

$$
\begin{gathered}
\frac{f: A \rightarrow B}{} \frac{x: A}{\lambda x \cdot f(x): A \rightarrow B} \\
\frac{\lambda f . \lambda x \cdot f(x):(A \rightarrow B) \rightarrow(A \rightarrow B)}{}
\end{gathered}
$$

$$
\text { eval: } \begin{aligned}
(A \Rightarrow B) \times A & \rightarrow B \\
(f, x) & \mapsto f(x)
\end{aligned}
$$

$$
\text { via currying } X \rightarrow(A \Rightarrow B) \cong(X \times A) \rightarrow B_{34}
$$

How do we define functions?

the simply-typed λ		x is a variable	$P: B$ is a program	$x: A$ is a variable
$\lambda x . f(x)=(x \mapsto f(x))$		x is a program	abstraction $\quad \lambda x . P: A \rightarrow$	a program
$P: A \rightarrow B$ is a program	$Q: A$ is a program		evaluating $=$ substituting for bou	extensionality
$P(Q): B$ is a program		application	$P(Q) \sim_{\beta} P[x \mapsto Q]$ $=$ running the program	$\begin{gathered} P \sim_{\eta} \lambda x \cdot P(x) \\ f=(x \mapsto f(x)) \end{gathered}$

$\frac{f: A \rightarrow B \quad x: A}{\frac{f(x): B}{\lambda x \cdot f(x): A \rightarrow B}}$

$$
\begin{aligned}
\text { eval }:(A \Rightarrow B) & \times A \rightarrow B \\
(f, x) & \mapsto f(x)
\end{aligned}
$$

Things we can't do

Note there's no restrictions on either rule!

$\frac{f \text { is a variable }}{f \text { is a program }}$
$\frac{f(f) \text { is a program }}{\lambda f \cdot f(f) \text { is a program }}$

Looping, recursion,

$$
\begin{aligned}
(\lambda f . f(f))(\lambda f . f(f)) & \leadsto(\lambda f . f(f))[f \mapsto(\lambda f . f f)] \\
& =(\lambda f . f(f))(\lambda f . f(f))
\end{aligned}
$$

Encode Peano arithmetic

$$
\begin{aligned}
1 & :=(\lambda f \cdot \lambda f \cdot f(x)) \\
2 & :=(\lambda f \cdot \lambda f \cdot f(f x)) \\
\text { plus } & :=(\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x))
\end{aligned}
$$

Adding primitives

the simply-typed λ-calculus
$\lambda x . f(x)=(x \mapsto f(x))$
A functional programming language lets you

- form functions
- evaluate functions at arguments

$$
\overline{\underline{n}: \text { nat }}(n \in \mathbb{N})
$$

true : bool false : bool
$\overline{\text { flip() : bool }}$

Adding primitives

the simply-typed λ-calculus
$\lambda x . f(x)=(x \mapsto f(x))$

What about plus, if etc?

$$
\text { plus : } \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

$$
\text { if : } 2 \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

A functional programming language lets you

- form functions
- evaluate functions at arguments
true : bool false : bool
$\overline{\text { flip() : bool }}$

$$
\operatorname{if}(i, n, m)= \begin{cases}n & \text { if } i=0 \\ m & \text { if } i=1\end{cases}
$$

Adding primitives

the simply-typed λ-calculus

$\lambda x . f(x)=(x \mapsto f(x))$

$$
\overline{\underline{n}: \text { nat }}(n \in \mathbb{N})
$$

What about plus, if etc?

$$
\text { plus : } \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

$$
\text { if : } 2 \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

A functional programming language lets you

- form functions
- evaluate functions at arguments
true : bool false : bool
$\overline{\text { flip() }: ~ b o o l}$

$$
\operatorname{if}(i, n, m)= \begin{cases}n & \text { if } i=0 \\ m & \text { if } i=1\end{cases}
$$

Option 1: if $(b, n, m): \operatorname{nat}_{\text {(where } b: \text { bool, } n: \text { nat, } m: \text { nat }}$
Option 2: add a type to model $\mathbb{N} \times \mathbb{N}$

Adding product types

the simply-typed λ-calculus
$\lambda x . f(x)=(x \mapsto f(x))$

How does $X \times Y$ behave in Set?

A functional programming language lets you

- form functions
- evaluate functions at arguments

$$
\begin{gathered}
\frac{x \in X}{(x, y) \in X \times Y} \text { pair } \frac{p \in A_{1} \times A_{2}}{\pi_{i}(p) \in A_{i}} \text { proj }(i=1,2) \\
\operatorname{croject~out~a~pair~}_{\pi_{i}\left(x_{1}, x_{2}\right)=x_{i}} \\
\text { extensionality: a pair is determined by its projections } \\
p=\left(\pi_{1}(p), \pi_{2}(p)\right)
\end{gathered}
$$

Adding product types

the simply-typed λ-calculus
$\lambda x . f(x)=(x \mapsto f(x))$

How does $X \times Y$ behave in simply-typed λ-calculus?

A functional programming language lets you

- form functions
- evaluate functions at arguments

$$
\frac{P_{1}: A_{1} \quad P_{2}: A_{2}}{\left\langle P_{1}, P_{2}\right\rangle: A_{1} \times A_{2}}
$$

$$
P: A_{1} \times A_{2}
$$

$$
\pi_{i}(P): A_{i}
$$

project out a pair

$$
\pi_{i}\left\langle P_{1}, P_{2}\right\rangle \sim_{\beta} P_{i}
$$

extensionality: a pair is determined by its projections

$$
P \sim_{\eta}\left\langle\pi_{1}(P), \pi_{2}(P)\right\rangle
$$

The simply-typed $\boldsymbol{\lambda}$-calculus with products and primitives

= the simplest (typed)
functional programming language
can also add sums / disjoint unions, lists, recursion,
$\frac{x: A \quad P: B}{\lambda x . P: A \rightarrow B}$ abstraction
$P: A \rightarrow B$

$$
P(Q): B
$$

evaluating $=$ substituting for bound variable
$(\lambda x . P)(Q) \sim_{\beta} P[x \mapsto Q]$
= running the program extensionality: $f=(x \mapsto f(x))$ $P \sim_{\eta} \lambda x . P(x)$

$\overline{\text { true }: \text { bool }}$	$\overline{\text { false }: \text { bool }}$	$\overline{\operatorname{if}(b, n, m): \text { nat }}$
$\overline{\text { flip(}): \text { bool }}$	$\frac{(n \in \mathbb{N})}{\underline{n}: \text { nat }}$	

β-reduction = running the program

$(\lambda p:$ nat \times nat \rightarrow bool $. \lambda t:$ nat \times nat. $\operatorname{if}(p(t), \underline{2}, \underline{3}))($ greater_than $)(\langle\underline{5}, \underline{6}\rangle)$

$$
\begin{aligned}
& \sim_{\beta}(\lambda t: \text { nat } \times \text { nat } . \text { if }(\text { greater_than }(t), \underline{2}, \underline{3}))(\langle\underline{5}, \underline{6}\rangle) \\
& \sim_{\beta} \text { if }(\text { greater_than }\langle\underline{5}, \underline{6}\rangle, \underline{2}, \underline{3}) \\
& \sim_{\beta} \underline{3}
\end{aligned}
$$

The magic of higher-order functions

higher-order functions $=$ functions of type $(A \rightarrow B) \rightarrow C$
higher-order functions let you re-use code in a very efficient way

$$
\begin{aligned}
& P:((\text { nat } \rightarrow \text { bool }) \times(\text { nat } \rightarrow \text { nat })) \rightarrow \text { nat } \\
& \text { eval: }(A \Rightarrow B) \times A \rightarrow B \\
& (f, x) \mapsto f(x) \\
& \text { comp : }(B \Rightarrow C) \times(A \Rightarrow B) \rightarrow(A \Rightarrow C) \\
& (g, f) \mapsto g \circ f \\
& \lambda f . \lambda x .\left(\pi_{1}(f)\right)\left(\pi_{2}(f)(x)\right):((B \rightarrow C) \times(A \rightarrow B)) \rightarrow(A \rightarrow C) \\
& \pi_{1}(f):(B \rightarrow C) \\
& \pi_{2}(f):(A \rightarrow B) \\
& \pi_{2}(f)(x): B \\
& \left(\pi_{1}(f)\right)\left(\pi_{2}(f)(x)\right): C
\end{aligned}
$$

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
(1) "equality as functions"
(2) "equality as programs"
= same behaviour no matter
what program you put them into

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
terms in some version of simply-typed λ-calculus
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
$\beta \eta$-equality $=_{\beta \eta}$: the congruence generated by $\sim_{\beta} \cup \sim_{\eta}$
observational equivalence: $\quad P \simeq{ }_{\text {obs }} Q$ iff whatever program C [_] of type bool

$$
\begin{aligned}
(\lambda x . P)(Q) & ={ }_{\beta \eta} P[x \mapsto Q] \\
P & ={ }_{\beta \eta} \lambda x \cdot P(x) \\
\pi_{i}\left(\left\langle P_{1}, P_{2}\right\rangle\right) & ={ }_{\beta \eta} P_{i} \quad(i=1,2)
\end{aligned}
$$ or nat we put them in, $C[P]$ and $C[Q]$ have the

$P={ }_{\beta \eta} Q \Longrightarrow P \simeq_{\text {ctx }} Q$ same behaviour

[^0]
What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
terms in some version of simply-typed λ-calculus
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
$\beta \eta$-equality $=_{\beta \eta}$: the congruence generated by $\sim_{\beta} \cup \sim_{\eta}$
observational equivalence: $\quad P \simeq_{\text {obs }} Q$ iff whatever program $C\left[_\right]$of type bool
 or nat we put them in, $C[P]$ and $C[Q]$ have the same behaviour

$$
\begin{aligned}
(\lambda x . P)(Q) & ={ }_{\beta \eta} P[x \mapsto Q] \\
P & ={ }_{\beta \eta} \lambda x \cdot P(x) \\
\pi_{i}\left(\left\langle P_{1}, P_{2}\right\rangle\right) & ={ }_{\beta \eta} P_{i} \quad(i=1,2) \\
P & ={ }_{\beta \eta}\left\langle\pi_{1}(P), \pi_{2}(P)\right\rangle
\end{aligned}
$$

converse is false!

What does programming language theory study?

We ask:
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
$\beta \eta$-equality $=_{\beta \eta}$: the congruence generated by $\sim_{\beta} \cup \sim_{\eta}$
observational equivalence: $\quad P \simeq{ }_{\text {obs }} Q$ iff whatever program $C\left[_\right]$of type bool or nat we put them in, $C[P]$ and $C[Q]$ have the same behaviour

Two schools:
(1) Syntactic techniques
(2) Semantic techniques

What does programming language theory study?

We ask:
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:

Note the observable behaviour is about when values get returned
this is what we care about! observational equivalence: $\quad P \simeq{ }_{\text {obs }} Q$ iff whatever program $C\left[_\right]$of type bool or nat we put them in, $C[P]$ and $C[Q]$ have the same behaviour

Two schools:
(1) Syntactic techniques
(2) Semantic techniques

What does programming language theory study?

We ask:
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:

Note the observable behaviour is about when values get returned
this is what we care about!

Terms in some version of simply-typed λ-calculus

Two schools:
(1) Syntactic techniques
(2) Semantic techniques

Coming up next

1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs
3. Introduce differentiable programming
4. Explain the interpretation in Diff

Cartesian closed categories ${ }_{\text {(cccs) }}$

def: a cartesian closed category $(\mathbb{C}, \times, 1, \Rightarrow)$ is a category \mathbb{C} with finite products $(\times, 1)$ and a right adjoint $A \Rightarrow(-)$ for every $(-) \times A$

$$
\begin{aligned}
& \mathbb{C}\left(X, A_{1} \times A_{2}\right) \cong \mathbb{C}\left(X, A_{1}\right) \times \mathbb{C}\left(X, A_{2}\right) \\
& f \mapsto\left(\pi_{1} \circ f, \pi_{2} \circ f\right) \\
&\left\langle f_{1}, f_{2}\right\rangle \leftrightarrow\left(f_{1}, f_{2}\right) \\
&\left\langle f_{1}, f_{2}\right\rangle(x)=\left(f_{1} x, f_{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{C}(X \times A, B) & \cong \mathbb{C}(X, A \Rightarrow B) \\
f & \mapsto \Lambda(f) \Lambda(f)(x)=f(x,-) \\
\mathrm{eval} \circ(f \times A) & \mapsto f
\end{aligned}
$$

$$
\tilde{f}(x, a)=f(x)(a)
$$

Cartesian closed categories ${ }_{\text {(cccs) }}$

def: a cartesian closed category $(\mathbb{C}, \times, 1, \Rightarrow)$ is a category \mathbb{C} with finite products $(\times, 1)$ and a right adjoint $A \Rightarrow(-)$ for every $(-) \times A$

$$
\begin{aligned}
& \mathbb{C}\left(X, A_{1} \times A_{2}\right) \cong \mathbb{C}\left(X, A_{1}\right) \times \mathbb{C}\left(X, A_{2}\right) \\
& f \mapsto\left(\pi_{1} \circ f, \pi_{2} \circ f\right) \\
&\left\langle f_{1}, f_{2}\right\rangle \leftrightarrow\left(f_{1}, f_{2}\right) \\
&\left\langle f_{1}, f_{2}\right\rangle=\lambda x \cdot\left(f_{1} x, f_{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{C}(X \times A, B) & \cong \mathbb{C}(X, A \Rightarrow B) \\
f & \mapsto \Lambda(f)^{\Lambda(f)=\lambda x \cdot f(x,-)} \\
\operatorname{eval} \circ(f \times A) & \leftrightarrow f
\end{aligned}
$$

$$
\text { eval }=\lambda(f, x) \cdot f(x)
$$

$$
\text { eval } \circ(f \times A)=\lambda(x, a) \cdot f(x)(a)
$$

Cartesian closed categories ${ }_{\text {(cccs) }}$

def: a cartesian closed category $(\mathbb{C}, \times, 1, \Rightarrow)$ is a category \mathbb{C}
with finite products $(\times, 1)$
and a right adjoint $A \Rightarrow(-)$ for every $(-) \times A$

$$
\begin{aligned}
& \mathbb{C}\left(X, A_{1} \times A_{2}\right) \cong \mathbb{C}\left(X, A_{1}\right) \times \mathbb{C}\left(X, A_{2}\right) \\
& f \mapsto\left(\pi_{1} \circ f, \pi_{2} \circ f\right) \text { projections } \\
& \text { paiming }\left\langle f_{1}, f_{2}\right\rangle \leftrightarrow\left(f_{1}, f_{2}\right) \\
&\left\langle f_{1}, f_{2}\right\rangle=\lambda x .\left(f_{1} x, f_{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{C}(X \times A, B) & \cong \mathbb{C}(X, A \Rightarrow B) \\
f & \mapsto \Lambda(f)^{\Lambda(f)=\lambda x \cdot f(x,-)} \text { abstraction } \\
\mathrm{eval} \cdot(f \times A) & \leftrightarrow f
\end{aligned}
$$

```
eval = \lambda(f,x).f(x) appliation
eval\circ}\circ(f\timesA)=\lambda(x,a).f(x)(a
```


Semantic interpretation

| simply-typed
 λ-calculus | semantic interpretation | | |
| :---: | :---: | :---: | :---: | | cartesian closed |
| :---: |
| category \mathbb{C} |

Meanings for types in a CCC

Types $\ni A, B::=$ nat \mid bool $|A \times B| A \rightarrow B$

Meanings for types in a CCC

Types $\ni A, B::=$ nat \mid bool $|A \times B| A \rightarrow B$

$$
\begin{aligned}
\llbracket \text { nat } \rrbracket & :=\mathbb{N} \\
\llbracket \text { bool } \rrbracket & :=2
\end{aligned}
$$

Meanings for types in a CCC

$$
\text { Types } \ni A, B::=\text { nat } \mid \text { bool }|A \times B| A \rightarrow B
$$

$$
\begin{aligned}
\llbracket \mathrm{nat} \rrbracket & :=\mathbb{N} \\
\llbracket \mathrm{bool} \rrbracket & :=2 \\
\llbracket A \times B \rrbracket & :=\llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket A \rightarrow B \rrbracket & :=(\llbracket A \rrbracket \Rightarrow \llbracket B \rrbracket)
\end{aligned}
$$

$$
\begin{aligned}
\text { 【nat } \rightarrow \text { bool } \rrbracket & :=(\mathbb{N} \Rightarrow 2) \\
\llbracket \text { bool } \rightarrow \text { bool } \rrbracket & :=(2 \Rightarrow 2)
\end{aligned}
$$

Meanings for terms in a CCC

handling free variables

```
no free variables
plus : nat }\times\mathrm{ nat }->\mathrm{ nat
    assigns something of type nat whenever we give P : nat }\times\mathrm{ nat
    so \llbracketplus\rrbracket is a map \llbracketnat\rrbracket × \llbracketnat\rrbracket }->\mathrm{ 【nat】;
    equivalently, a map 1 }->((\llbracket\mathrm{ nat \ × \nat】) }=>\mathrm{ 【nat】)
```


Meanings for terms in a CCC

handling free variables

no	b, n and m free
plus ：nat \times nat \rightarrow nat assigns something of type nat whenever we give P ：nat \times nat so 【plus】 is a map 【nat】 \times 【nat】 \rightarrow 【nat】； equivalently，a map $1 \rightarrow((\llbracket$ nat $\rrbracket \times \llbracket$ nat $\rrbracket)) \Rightarrow$［nat $\rrbracket)$	if (b, n, m) ：nat assigns something of type nat whenever we give b ：bool，$n:$ nat and m ：nat so 【if $(b, n, m) \rrbracket$ is a map $\llbracket \mathrm{bool} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \rightarrow \llbracket \mathrm{nat} \rrbracket$

Meanings for terms in a CCC

handling free variables

no	b, n and m free
plus ：nat \times nat \rightarrow nat assigns something of type nat whenever we give P ：nat \times nat so 【plus】 is a map 【nat】 \times 【nat】 \rightarrow 【nat】； equivalently，a map $1 \rightarrow((\llbracket$ nat $\rrbracket \times \llbracket$ nat $\rrbracket)) \Rightarrow$［nat $\rrbracket)$	$\operatorname{if}(b, n, m):$ nat assigns something of type nat whenever we give b ：bool，$n:$ nat and m ：nat so 【if $(b, n, m) \rrbracket$ is a map $\llbracket \mathrm{bool} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \rightarrow$［nat】

$P: B$ with free variables $\left(x_{i}: A_{i}\right)_{i=1, \ldots, n}$ has interpretation $\llbracket P \rrbracket: \prod_{i=1}^{n} \llbracket A_{i} \rrbracket \rightarrow \llbracket B \rrbracket$

```
assigns }\mp@subsup{a}{i}{}\in\llbracket[\mp@subsup{A}{i}{}\rrbracket\rrbracket\mathrm{ to each }\mp@subsup{x}{i}{}:\mp@subsup{A}{i}{
eg \llbracketif \rrbracket(0,2,3)=2
```


Meanings for terms in a CCC

handling free variables

no	b, n and m free
plus ：nat \times nat \rightarrow nat assigns something of type nat whenever we give P ：nat \times nat so 【plus】 is a map 【nat】 \times 【nat】 \rightarrow 【nat \rrbracket ； equivalently，a map $1 \rightarrow((\llbracket$ nat $\rrbracket \times \llbracket$ nat $\rrbracket)) \Rightarrow$ 【nat $\rrbracket)$	$\operatorname{if}(b, n, m)$ ：nat assigns something of type nat whenever we give b ：bool，$n:$ nat and $m:$ nat so $\llbracket \mathrm{if}(b, n, m) \rrbracket$ is a map $\llbracket \mathrm{bool} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \times \llbracket \mathrm{nat} \rrbracket \rightarrow$［nat】

$P: B$ with free variables $\left(x_{i}: A_{i}\right)_{i=1, \ldots, n}$ has interpretation $\llbracket P \rrbracket: \prod_{i=1}^{n} \llbracket A_{i} \rrbracket \rightarrow \llbracket B \rrbracket$
for $P: B$ with no free variables，
$\llbracket P \rrbracket: 1 \rightarrow \llbracket B \rrbracket$
so eg $P: A \rightarrow B$ is identified with an element of $(\llbracket A \rrbracket \Rightarrow \llbracket B \rrbracket)$
assigns $a_{i} \in \llbracket A_{i} \rrbracket$ to each $x_{i}: A_{i}$
eg \llbracket if $\rrbracket(0,2,3)=2$

Meanings for closed terms in Set

Fix an interpretation $\llbracket c \rrbracket$ for each primitive c

For $P: B$ with no free variables, $\llbracket P \rrbracket \in \llbracket B \rrbracket$:

$$
\begin{aligned}
\llbracket \pi_{i}(P) \rrbracket & =(i \text { th projection out } \llbracket P \rrbracket) \\
\llbracket\left\langle P_{1}, P_{2}\right\rangle \rrbracket & =\left(\llbracket P_{1} \rrbracket \quad, \llbracket P_{2} \rrbracket \quad\right) \in \llbracket B_{1} \rrbracket \rrbracket \times \llbracket B_{i} \rrbracket \\
\llbracket P(Q) \rrbracket & =(\llbracket P \rrbracket \quad(\llbracket Q \rrbracket)) \in \llbracket C \rrbracket \\
\llbracket \lambda x . P \rrbracket & =\lambda b \cdot \llbracket P \rrbracket(\quad b) \in \llbracket B \| \Rightarrow \llbracket C \rrbracket
\end{aligned}
$$

Meanings for terms in Set

Fix an interpretation $\llbracket c \rrbracket$ for each primitive c
For $\vec{a} \in \prod_{i=1}^{n} \llbracket A_{i} \rrbracket$
assigning $a_{i} \in \llbracket A_{i} \rrbracket$ to each free $x_{i}: A_{i}$ in P :

Meanings for terms in Set

Fix an interpretation $\llbracket c \rrbracket$ for each primitive c
For $\vec{a} \in \prod_{i=1}^{n} \llbracket A_{i} \rrbracket$
assigning $a_{i} \in \llbracket A_{i} \rrbracket$ to each free $x_{i}: A_{i}$ in P :

$$
\begin{aligned}
\llbracket \pi_{i}(P) \rrbracket(\vec{a}) & =(\text { ith projection out } \llbracket P \rrbracket(\vec{a})) \in \llbracket \beta_{i} \rrbracket \\
\llbracket\left\langle P_{1}, P_{2}\right\rangle \rrbracket(\vec{a}) & =\left(\llbracket P_{1} \rrbracket(\vec{a}), \llbracket P_{2} \rrbracket(\vec{a})\right) \in \llbracket B_{1} \rrbracket \times \llbracket B_{2} \rrbracket
\end{aligned}
$$

Meanings for terms in Set

Fix an interpretation $\llbracket c \rrbracket$ for each primitive c

For $\vec{a} \in \prod_{i=1}^{n} \llbracket A_{i} \|$

assigning $a_{i} \in \llbracket A_{i} \rrbracket$ to each free $x_{i}: A_{i}$ in P :

$$
\begin{aligned}
\llbracket \pi_{i}(P) \rrbracket(\vec{a}) & =(i \text { th projection out } \llbracket P \rrbracket(\vec{a})) \in \llbracket B_{i} \rrbracket \\
\llbracket\left\langle P_{1}, P_{2}\right\rangle \rrbracket(\vec{a}) & =\left(\llbracket P_{1} \rrbracket(\vec{a}), \llbracket P_{2} \rrbracket(\vec{a})\right) \in \llbracket B_{1} \rrbracket \times \llbracket B_{2} \rrbracket \\
\llbracket P(Q) \rrbracket(\vec{a}) & =(\llbracket P \rrbracket(\vec{a}))(\llbracket Q \rrbracket(\vec{a})) \in \llbracket C \rrbracket \\
\llbracket \lambda x . P \rrbracket(\vec{a}) & =\lambda b \cdot \llbracket P \rrbracket(\vec{a}, b) \in \llbracket B \| \Rightarrow \llbracket C \rrbracket
\end{aligned}
$$

Meanings for terms in a CCC

Fix an interpretation $\llbracket c \rrbracket$ for each primitive c
Then:

$$
\begin{aligned}
\llbracket \pi_{i}(P): B_{i} \rrbracket & =\pi_{i} \circ \llbracket P: B_{1} \times B_{2} \rrbracket \\
\llbracket\left\langle P_{1}, P_{2}\right\rangle: B_{1} \times B_{2} \rrbracket & =\left\langle\llbracket P_{1}: B_{1} \rrbracket, \llbracket P_{2}: B_{2} \rrbracket\right\rangle\left\langle f_{1}, f_{2}\right\rangle(x)=\left(f_{1} x, f_{2} x\right) \\
\llbracket P(Q): C \rrbracket & =\mathrm{eval} \circ\langle\llbracket P: B \rightarrow C \rrbracket, \llbracket Q: B \rrbracket\rangle \\
\llbracket \lambda x \cdot P: B \rightarrow C \rrbracket & =\Lambda(\llbracket P: C \rrbracket) \quad \begin{array}{ll}
\Lambda(f)=\lambda x \cdot f(x,-) \\
\text { eval } \circ(f \times A)=\lambda(x, a) \cdot f(x)(a)
\end{array}
\end{aligned}
$$

Soundness of the interpretation

for any CCC \mathbb{C} and any choice of base types and constants,

$$
P={ }_{\beta \eta} Q \Longrightarrow \llbracket P \rrbracket=\llbracket Q \rrbracket
$$

in an adequate model, $\llbracket P \rrbracket=\llbracket Q \rrbracket \Longrightarrow P \simeq_{\text {obs }} Q$

What does programming language theory study?

We want programs that are:
efficient, fast, and correct

We ask:
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
$\beta \eta$-equality $=_{\beta \eta}$: the congruence generated by $\sim_{\beta} \cup \sim_{\eta}$
observational equivalence: $\quad P \simeq_{\text {obs }} Q$ iff whatever program $C\left[_\right]$of type bool or nat we put them in, $C[P]$ and $C[Q]$ have the same behaviour

What does denotational semantics study?

We want programs that are:
efficient, fast, and correct

We ask:
terms in some version of simply-typed λ-calculus interpreted in a CCC
(1) How should we think about programs?
(2) When are programs interchangeable?

Two notions of equality:
$\beta \eta$-equality $=_{\beta \eta}$: the congruence generated by $\sim_{\beta} \cup \sim_{\eta}$
observational equivalence: $\quad P \simeq{ }_{\text {obs }} Q$ iff whatever program $C\left[_\right]$of type bool or nat we put them in, $C[P]$ and $C[Q]$ have the same behaviour
use adequate models to reason about observational equivalence of programs
adequacy: $\llbracket P \rrbracket=\llbracket Q \rrbracket \Longrightarrow P \simeq_{\text {obs }} Q$

Some example interpretations

languages with no effects
languages with printing, global memory, exceptions
languages with local memory
languages with recursion

plain CCCs

CCCS with $\mathbf{a}_{\text {(strong) }}$ the monad T describes the monad effect, eg $(-)+1$ or $S^{*} \times(-)$

Presheaf think: programs parametrised by categories possible states of the memory
order-enriched categories
\leq models 'how defined' a function is

How should we think about programs?

```
fun add(x, y):
    return (x+y)
fun divide(x, y):
    return (x/y)
fun print_and_return(x):
    print "hello";
    return x;
let b = flip(p);
return b;
```

a function $\quad \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
a function $\mathbb{Z} \times \mathbb{Z}_{\neq 0} \rightarrow \mathbb{Q}$
a function $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}+\{$ fail $\}$
a function $\mathbb{N} \rightarrow\{a, b, \ldots, z\}^{*} \times \mathbb{N}$
$x \mapsto($ hello,$x)$
a probability distribution on
\{ true, false \}
some measurable function (??)

Coming up next

1. Introduce an idealised functional programming language
2. Explain its semantic interpretation in CCCs
3. Introduce differentiable programming
4. Explain the interpretation in Diff
high-dimensional input

low-dimensional output

dog

high-dimensional input
 program P with many parameters
 eg a neural network with many layers, and different weights for the activation functions

ie differentiate the function described by P

can be done numerically, but it's hard in general!
https://www.youtube.com/watch? v=5u4G23_Oohl

	program P with many parameters	
input	ation tunctio	output

https://www.youtube.com/watch? v=5u4G23_Oohl
ie differentiate the function described by P

so that, eg, it classifies cats as cats as often as possible
can we write an algorithm to calculate derivatives exactly?
...and can we prove this is correct?
"forward AD",
"reverse AD", etc
differentiable programming (TensorFFow, PyTorch, etc)
= languages where you can automatically

https://www.youtube.com/ watch?v=5u4G23_Oohl

from the denotational semantics POV:
(1) $\llbracket P \rrbracket$ is some smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(2) aim: to algorithmically define a program $D(P)$ and prove that $\llbracket D(P) \rrbracket=D(\llbracket P \rrbracket)$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program $\boldsymbol{P}:$ real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $\|D(P)\|=D(\pi P \|)$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $[D(P)]=D([P])$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $\llbracket D(P) \|=D(\|P\|)$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus
and check $\llbracket D(P) \rrbracket=D(\llbracket P \rrbracket)$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $\llbracket D(P) \rrbracket=D(\llbracket P \rrbracket)$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $\llbracket D(P) \rrbracket=D(\llbracket P \rrbracket)$

$$
\begin{aligned}
& \overrightarrow{\mathcal{D}}(x) \stackrel{\text { def }}{=} x(\underline{c}) \stackrel{\text { def }}{=}\langle\underline{c}, 0\rangle \\
& \overrightarrow{\mathcal{D}}(t+s) \stackrel{\text { def }}{\text { def }} \mathbf{c a s e} \overrightarrow{\mathcal{D}}(t) \text { of }\left\langle x, x^{\prime}\right\rangle \rightarrow \text { case } \overrightarrow{\mathcal{D}}(s) \text { of }\left\langle y, y^{\prime}\right\rangle \rightarrow\left\langle x+y, x^{\prime}+y^{\prime}\right\rangle \\
& \overrightarrow{\mathcal{D}}(t * s) \stackrel{\text { def }}{=} \text { case } \overrightarrow{\mathcal{D}}(t) \text { of }\left\langle x, x^{\prime}\right\rangle \rightarrow \mathbf{c a s e} \overrightarrow{\mathcal{D}}(s) \text { of }\left\langle y, y^{\prime}\right\rangle \rightarrow\left\langle x * y, x * y^{\prime}+x^{\prime} * y\right\rangle \\
& \overrightarrow{\mathcal{D}}(\varsigma(t)) \stackrel{\text { def }}{=} \text { case } \overrightarrow{\mathcal{D}}(t) \text { of }\left\langle x, x^{\prime}\right\rangle \rightarrow \text { let } y=\varsigma(x) \text { in }\left\langle y, x^{\prime} * y *(1-y)\right\rangle \\
& \overrightarrow{\mathcal{D}}(\lambda x . t) \stackrel{\text { def }}{=} \lambda x \cdot \overrightarrow{\mathcal{D}}(t) \quad \overrightarrow{\mathcal{D}}(t s) \stackrel{\text { def }}{=} \overrightarrow{\mathcal{D}}(t) \overrightarrow{\mathcal{D}}(s) \quad \overrightarrow{\mathcal{D}}\left(\left\langle t_{1}, \ldots, t_{n}\right\rangle\right) \stackrel{\text { def }}{=}\left\langle\overrightarrow{\mathcal{D}}\left(t_{1}\right), \ldots, \overrightarrow{\mathcal{D}}\left(t_{n}\right)\right\rangle
\end{aligned}
$$

Proving correctness of automatic differentiation

a natural suggestion:
(1) we only care about the programs returning a value, ie those of type real
(2) take simply-typed λ-calculus + primitives for real numbers etc
(3) a program P : real is meant to represent a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}$
(4) define $D(P)$ by induction on the simply-typed λ-calculus and check $\llbracket D(P) \rrbracket=D(\llbracket P \rrbracket)$
ie. we interpret in the category of cartesian spaces $\left(=\mathbb{R}^{n}\right.$ for somen n and smooth maps
but this category is not cartesian closed! and even P : real may contain lambdas,
eg $(\lambda f . \lambda x . f(x+x))(\exp)(2)$

high-dimensional input
 program P with many parameters
 eg a neural network with many layers, and different weights for the activation functions output

https://www.youtube.com/ watch?v=5u4G23_Oohl
ie differentiate the function described by P

can be done numerically, but it's hard in general!

the natural semantic model for studying this problem does not support higher-order functions

the natural semantic model for studying this problem does not support higher-order functions

The category of diffeological spaces

Diff is a nice semantic model! It has:
(1) cartesian closure = can model product and function types
(2) a full embedding CartSp \rightarrow Diff $=$ conservativity over the natural model, good ways to interpret reals etc
(3) coproducts

```
= can interpret sum types (~ disjoint unions)
```

(4) initial algebras for endofunctors
= can interpret lists and similar inductive types

Proving correctness of automatic differentiation

The strategy:
(a) interpret programs P in Diff
(b) prove that $\llbracket P:$ real $\rrbracket]$ always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type
(d) deduce correctness of the $D(-)$ algorithm at type real

Proving correctness of automatic differentiation

The strategy:
(a) interpret programs P in Diff
(b) prove that $\llbracket P$: real \rrbracket always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type
(d) deduce correctness of the $D(-)$ algorithm at type real

Proving correctness of automatic differentiation

The strategy:
(a) interpret programs P in Diff
(b) prove that $\llbracket P:$ real \rrbracket always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type
(d) deduce correctness of the $D(-)$ algorithm at type real

Proving correctness of automatic differentiation

The strategy:
(a) interpret programs P in Diff
(b) prove that $\llbracket P$: real \rrbracket always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type
(d) deduce correctness of the $D(-)$ algorithm at type real

Proving correctness of automatic differentiation

The strategy:
(a) interpret programs P in Diff
(b) prove that $\llbracket P:$ real \rrbracket always lands in CartSp, even if it has lambdas
(c) prove a correctness property for differentiation, at every type
(d) deduce correctness of the $D(-)$ algorithm at type real

Why do denotational semanticists care about Diff?

It provides a good semantic model for differentiable functional programming ...including function types
...which is conservative over the natural model in CartSp

Why do denotational semanticists care about Diff?

It provides a good semantic model for differentiable functional programming ...including function types
...which is conservative over the natural model in CartSp

So we can prove facts about derivatives of programs, ...including higher-order ones
...and thereby verify automatic differentiation algorithms

Why do denotational semanticists care about Diff?

It provides a good semantic model for differentiable functional programming ...including function types
...which is conservative over the natural model in CartSp

So we can prove facts about derivatives of programs,
...including higher-order ones
...and thereby verify automatic differentiation algorithms

And, at type real the interpretation coincides with the natural one

Diff at work for semantics

(1) An analogy
(2) Adding recursion
(3) Cutting down the model: full abstraction

Probabilistic programming

Idea:
(1) programs express statistical models, including conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

Probabilistic programming

Idea:
(1) programs express statistical models, including conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

```
normalise(
    let x = sample(bernoulli(0.8));
    let r = (if x then 10 else 3);
    observe 0.45 from exponential(r)
    return(x)
)
```

How do we interpret probabilistic programs?
What is a good semantic model?

Probabilistic programming

Idea:
(1) programs express statistical models, including conditioning on observations
(2) return the corresponding distribution (often via sampling algorithms)

```
normalise(
    let x = sample(bernoulli(0.8));
    let r = (if x then 10 else 3);
    observe 0.45 from exponential(r)
    return(x)
)
```

probabilistic programs 'should' be interpreted by measurable functions
but Meas is not cartesian closed!
$=$ no way to interpret higher-order functions

How do we interpret probabilistic programs?
What is a good semantic model?

Quasi-Borel spaces

Diff = category of concrete sheaves on cartesian manifolds

QBS = category of concrete sheaves on standard Borel spaces

QBS provides a good semantic model for probabilistic programming, just as Diff provides a good semantic model for differentiable programming

Diff at work for semantics

(1) An analogy: quasi-Borel spaces Heumen, Kammar, Moss, Sclior, Staton, vakar, Yang]
(2) Adding recursion
(3) Cutting down the model: full abstraction

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus
 \author{ [Scott, Plotkin,...]

}plus: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying
$\operatorname{plus}(x, 0)=x$
$\operatorname{plus}(x, y+1)=\operatorname{plus}(x, y)+1$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

plus: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying

$$
\begin{aligned}
\operatorname{plus}(x, 0) & =x \\
\operatorname{plus}(x, y+1) & =\operatorname{plus}(x, y)+1
\end{aligned}
$$

recursion in simply-typed λ-calculus:

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

plus: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying

$$
\begin{aligned}
\operatorname{plus}(x, 0) & =x \\
\operatorname{plus}(x, y+1) & =\operatorname{plus}(x, y)+1
\end{aligned}
$$

recursion in simply-typed λ-calculus:

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\operatorname{fix}(M)=_{\beta \eta} M(\operatorname{fix}(M))
$$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

[Scott, Plotkin,...]
plus: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying plus $(x, 0)=x$
$\operatorname{plus}(x, y+1)=\operatorname{plus}(x, y)+1$

$$
\operatorname{fix}(M)=_{\beta \eta} M(\operatorname{fix}(M))
$$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

[Scott, Plotkin,...]
plus : $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying
plus $(x, 0)=x$

$$
\operatorname{plus}(x, y+1)=\operatorname{plus}(x, y)+1
$$

$$
P: A \rightarrow A \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\text { plus }:=\operatorname{fix}(\lambda p \cdot \lambda x \cdot \lambda y \text {. if } y==0 \text { then } x \text { else } p x(y-1))
$$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

[Scott, Plotkin,...]
plus : $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying
plus $(x, 0)=x$

$$
\operatorname{plus}(x, y+1)=\operatorname{plus}(x, y)+1
$$

$$
P: A \rightarrow A \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\begin{aligned}
\text { plus }: & =\text { fix }(\lambda p . \lambda x . \lambda y . \text { if } y==0 \text { then } x \text { else } p x(y-1)) \\
\text { plus } & \sim M \text { (plus) } \\
& \sim_{\beta} \lambda x . \lambda y . \text { if } y==0 \text { text } x \text { else plus } x(y-1)
\end{aligned}
$$

Adding recursion to simply-typed $\boldsymbol{\lambda}$-calculus

[Scott, Plotkin,...]
plus: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is the least map satisfying
plus $(x, 0)=x$

$$
\operatorname{plus}(x, y+1)=\operatorname{plus}(x, y)+1
$$

$$
P: A \rightarrow A \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\begin{aligned}
\text { plus }: & =\text { fix }(\lambda p . \lambda x . \lambda y . \text { if } y==0 \text { then } x \text { else } p x(y-1)) \\
\text { plus } & \leadsto M \text { (plus) } \\
& \sim_{\beta} \lambda x . \lambda y . \text { if } y==0 \text { text } x \text { else plus } x(y-1)
\end{aligned}
$$

$$
\text { plus } x y \leadsto(\lambda x . \lambda y \text {. if } y==0 \text { then } x \text { else plus } x(y-1)) x y
$$

$$
\leadsto \text { if } y==0 \text { then } x \text { else plus } x(y-1)
$$

Adding recursion to the semantics

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\operatorname{fix}(M)=_{\beta \eta} M(\operatorname{fix}(M))
$$

Adding recursion to the semantics

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\operatorname{fix}(M)=_{\beta \eta} M(\operatorname{fix}(M))
$$

Standard semantics $=\omega$-complete partial orders with a bottom element

Adding recursion to the semantics

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\operatorname{fix}(M)={ }_{\beta \eta} M(\operatorname{fix}(M))
$$

Standard semantics $=\omega$-complete partial orders with a bottom element
A Scott domain is a partially ordered set (X, \leq, \perp) where
(1) every chain $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$ has a least upper bound
(2) $\perp \leq x$ for all x

Adding recursion to the semantics

$$
\frac{P: A \rightarrow A}{\operatorname{fix}(M): A} \quad \operatorname{fix}(M) \leadsto M(\operatorname{fix}(M))
$$

$$
\operatorname{fix}(M)={ }_{\beta \eta} M(\operatorname{fix}(M))
$$

Standard semantics $=\omega$-complete partial orders with a bottom element
A Scott domain is a partially ordered set (X, \leq, \perp) where
(1) every chain $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$ has a least upper bound
(2) $\perp \leq x$ for all x

Forms a CCC, and every map has a least fixed point

$$
\llbracket f \mathrm{ix}(M) \rrbracket=\text { least fixed point of } \llbracket M \rrbracket
$$

Adding recursion to Diff

A Scott domain is a partially ordered set (X, \leq, \perp) where
(1) every chain $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$ has a least upper bound
(2) $\perp \leq x$ for all x

Forms a CCC, and every map has a least fixed point
【fix $(M) \rrbracket=$ least fixed point of $\llbracket M \rrbracket$

Adding recursion to Diff

A Scott domain is a partially ordered set (X, \leq, \perp) where
(1) every chain $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$ has a least upper bound
(2) $\perp \leq x$ for all x

Forms a CCC, and every map has a least fixed point
【fix $(M) \rrbracket=$ least fixed point of $\llbracket M \rrbracket$
def: an ω-diffeological space $\left(X, \mathscr{P}_{X}, \leq\right)$ is a diffeological space (X, \mathscr{P}_{X})
...such that (X, \leq) is a domain
...and \mathscr{P}_{X}^{U} is closed under least upper bounds of chains

Adding recursion to Diff

A Scott domain is a partially ordered set (X, \leq, \perp) where
(1) every chain $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$ has a least upper bound
(2) $\perp \leq x$ for all x

Forms a CCC, and every map has a least fixed point
【fix $(M) \rrbracket=$ least fixed point of $\llbracket M \rrbracket$
def: an ω-diffeological space $\left(X, \mathscr{P}_{X}, \leq\right)$ is a diffeological space $\left(X, \mathscr{P}_{X}\right)$

Can extend correctness results for AD to languages with recursion!
...such that (X, \leq) is a domain
...and \mathscr{P}_{X}^{U} is closed under least upper bounds of chains

Diff at work for semantics

(1) An analogy: quasi-Borel spaces Heunen, Kammar, Moss, Scibior, Staton, vakar, Yang]
(2) Adding recursion Nakar Vakar, Kammar, Statorn
(3) Cutting down the model: full abstraction

Cutting down Diff ${ }_{\text {Remaxam shamanas }}$

$$
\text { Given } P \simeq_{\mathrm{ctx}} Q \text {, can we deduce } \llbracket P \rrbracket=\llbracket Q \rrbracket ? \begin{gathered}
\text { is the model } \\
\text { fully abstract? }
\end{gathered}
$$

Given $P \simeq_{\text {ctx }} Q$, can we deduce $\llbracket P \rrbracket=\llbracket Q \rrbracket ?$| $\begin{array}{c}\text { is the model } \\ \text { fully abstract? }\end{array}$ |
| :---: |

In general, no!
$\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ can agree on all definable things, but still differ! the semantics expresses richer behaviour than the syntax

Cutting down Diff ${ }_{\text {nemmencerememas }}$

Given $P \simeq_{\text {ctx }} Q$, can we deduce $\llbracket P \rrbracket=\llbracket Q \rrbracket ?$? | $\begin{array}{c}\text { is the model } \\ \text { fully abstract? }\end{array}$ |
| :---: |

In general, no!
$\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ can agree on all definable things, but still differ! the semantics expresses richer behaviour than the syntax

Solution:
refine the model so every $f: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ is definable
difficult bit: doing this for exponentials

Cutting down Diff

Given $P \simeq_{\text {ctx }} Q$, we can't deduce $\llbracket P \rrbracket=\llbracket Q \rrbracket$
 is the model fully abstract?

Solution:
refine the model so every $f: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ is definable difficult bit: doing this for exponentials if it preserves the property of being definable

Cutting down Diff

Given $P \simeq_{\text {ctx }} Q$, we can't deduce $\llbracket P \rrbracket=\llbracket Q \rrbracket$| $\begin{array}{l}\text { is the model } \\ \text { fully abstract? }\end{array}$ |
| :---: |

Solution:
refine the model so every $f: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ is definable difficult bit: doing this for exponentials idea: interalise the idea that fis definable if it preserves the property of being definable
objects = diffeological spaces paired with a family of relations morphisms $=$ smooth maps preserving the relations
(new model)
preserves primitives and products,
but not exponentials
Diff

Diff at work for semantics

(1) An analogy: quasi-Borel spaces Heunen, Kammar, Moss, Scibior, Staton, vakar, Yang]
(2) Adding recursion Nakar Vakar, Kammar, Statorn
(3) Cutting down the model: full abstraction K Kammar, Katumata, s.]

Denotational semantics:

- idealised functional programming language
$=$ simply-typed λ-calculus ${ }_{(+ \text {extensions })}$
- interchangeability of programs
= observational equivalence finer than equality-on-arguments!
- interpret programs in CCCs ${ }_{\text {(+ extensions) }}$

$$
P \mapsto D(P)
$$

Diff is a good model for studying automatic differentiation of programs

[^0]: converse is false!

