Constructing fully-abstract models of effectful λ -calculi

Ohad Kammar[†] and Shin-ya Katsumata^{*} and Philip Saville[‡]

[†]School of Informatics University of Edinburgh

*National Institute of Informatics Tokyo

[‡]Department of Computer Science University of Oxford

preprint at cs.ox.ac.uk/people/philip.saville/home.html

Slogan: models* go in, fully abstract models come out

$$\begin{array}{c} \textbf{Contextual equivalence [Morris, Milner,...]}}\\ \Gamma \vdash M \simeq_{\mathrm{ctx}} M' : \sigma & \Longleftrightarrow & \mathcal{C}[M] \Downarrow V \iff \mathcal{C}[M'] \Downarrow V\\ \mathcal{C}[-] \text{ any closed ground context} \end{array}$$

swapping *M* and *M'* doesn't affect observable behaviour

swapping *M* and *M'* doesn't affect observable behaviour

Reasoning about \simeq_{ctx} is hard! Want semantic techniques round this

doesn't affect observable behaviour

How does semantic equality relate to \simeq_{ctx} ? Adequacy: $\llbracket M \rrbracket = \llbracket M' \rrbracket \implies M \simeq_{ctx} M'$ Full abstraction: $M \simeq_{ctx} M' \implies \llbracket M \rrbracket = \llbracket M' \rrbracket$

observable behaviour

How does semantic equality relate to \simeq_{ctx} ? Adequacy: $\llbracket M \rrbracket = \llbracket M' \rrbracket \implies M \simeq_{ctx} M' \iff$ immediate! Full abstraction: $M \simeq_{ctx} M' \implies \llbracket M \rrbracket = \llbracket M' \rrbracket$

How does semantic equality relate to \simeq_{ctx} ? Adequacy: $\llbracket M \rrbracket = \llbracket M' \rrbracket \implies M \simeq_{ctx} M' \rightsquigarrow \text{ immediate!}$ Full abstraction: $M \simeq_{ctx} M' \implies \llbracket M \rrbracket = \llbracket M' \rrbracket$

In an adequate, fully abstract model semantic equality characterises contextual equivalence

late 1960s roots of the definition 1975 Milner introduces full abstraction 1977 Plotkin: domains model for PCF is not fully abstract 80s & 90s attempts to classify "sequentiality" + lots more late 90s games models, O'Hearn & Riecke's domains + logical relations model 21st C Marz, Riecke, Ehrhard *et al.*, Matache *et al.*, ... www mainly focussed on languages with recursion

fully abstract model $\mathrm{OHR}(\mathcal{M})$

of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's model

maps in ${\mathcal M}$ satisfying predicates

fully abstract model $OHR(\mathcal{M})$

inspired by O'Hearn & Riecke's model

fully abstract model $\mathrm{OHR}(\mathcal{M})$

of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's model

fully abstract model $\mathrm{OHR}(\mathcal{M})$

of computational λ -calculus + constants + sums

inspired by O'Hearn & Riecke's model

 $\begin{array}{l} \mbox{fully abstract model OHR}(\mathcal{M}) \\ \mbox{of computational } \lambda\mbox{-calculus + constants + sums} \end{array}$

fully abstract model $\mathrm{OHR}(\mathcal{M})$ of read-only state

 $\begin{array}{l} \mbox{fully abstract model } {\rm OHR}(\mathcal{M}) \\ \mbox{of an idealised probabilistic programming language} \end{array}$

The big picture

Obstruction to $(\mathcal{M}, \mathcal{T}, s)$ being fully abstract: \exists morphisms in \mathcal{M} expressing behaviour the syntax cannot [*c.f.* parallel-or]

Solution:

remove all such counterexamples to contextual equivalence

Up next: a recipe that doesn't quite work

... but is the template for our construction

A motivating example: read-only state

[Matache & Staton]

Idea [omitting sums for now]

- 1. A global, one-bit memory cell
- 2. You can read, but not write

The signature

types τ ::= bool \mid τ * τ \mid 1 \mid τ \rightarrow τ

types $\tau ::=$ bool $| \tau * \tau | 1 | \tau \rightarrow \tau$ terms M ::= # STLC x # variables | (M,M) # product types | $\pi_i(M)$ | () | $\lambda x \cdot M$ # function types

```
types \tau ::= bool \mid \tau * \tau \mid 1 \mid \tau \to \tau
terms M ::=
# STLC
                               # variables
     Х
   | (M,M)
                               # product types
  \mid \pi_i(\mathsf{M})
   | ()
   \lambda x . M
                               # function types
    ΜМ
# primitives
                               # boolean values
     tt
     ff
                               # boolean operations
     \wedge
     \vee
     if M then M else M # branching
```

types $\tau ::= bool \mid \tau * \tau \mid 1 \mid \tau \to \tau$ terms M ::= # STLC # variables х | (M,M) # product types $\mid \pi_i(\mathsf{M})$ | () $\mid \lambda \times . M$ # function types ΜМ # primitives # boolean values tt ff \wedge # boolean operations \sim if M then M else M # branching # effect operations | read : 1 \rightarrow bool # read from the cell

The semantic model
Idea:

- 1. Interpret programs as functions;
- 2. Parametrise by what's in the cell.

A model (Fin, $\mathrm{R}, \textbf{\textit{s}})$

Idea:

- 1. Interpret programs as functions;
- 2. Parametrise by what's in the cell.
- Use the category Fin of finite sets;

A model (Fin, $\mathrm{R}, \textbf{\textit{s}})$

Idea:

- 1. Interpret programs as functions;
- 2. Parametrise by what's in the cell.
 - Use the category Fin of finite sets;
 - Use the natural interpretation:

$$\begin{split} s[\![\mathsf{bool}]\!] &:= 2 := \{0, 1\} \\ s[\![\diamond \vdash \mathsf{tt} : \mathsf{bool}]\!] &= \mathrm{const}_1 \\ s[\![\diamond \vdash \mathsf{ff} : \mathsf{bool}]\!] &= \mathrm{const}_0 \\ s[\![\Gamma \vdash \neg M : \mathsf{bool}]\!] &= \lambda\gamma \cdot \lambda i \cdot \neg \bigl(s[\![M]\!](\gamma)(i)\bigr) \\ s[\![\Gamma \vdash \mathsf{read}() : \mathsf{bool}]\!] &= \lambda\gamma \cdot \lambda i \cdot i \end{split}$$

A model $(\mathsf{Fin},\mathrm{R},\textbf{\textit{s}})$

Idea:

- 1. Interpret programs as functions;
- 2. Parametrise by what's in the cell.
 - Use the category Fin of finite sets;
 - Use the natural interpretation:

$$s[\![\text{bool}]\!] := 2 := \{0, 1\}$$

$$s[\![\diamond \vdash \texttt{tt} : \texttt{bool}]\!] = \texttt{const}_1$$

$$s[\![\diamond \vdash \texttt{ff} : \texttt{bool}]\!] = \texttt{const}_0$$

$$s[\![\Gamma \vdash \neg M : \texttt{bool}]\!] = \lambda\gamma \cdot \lambda i \cdot \neg (s[\![M]\!](\gamma)(i))$$

$$s[\![\Gamma \vdash \texttt{read}() : \texttt{bool}]\!] = \lambda\gamma \cdot \lambda i \cdot i$$

• Use the reader monad: $R\underline{X} := (2 \Rightarrow \underline{X})$:

$$\begin{split} s[\![\diamond \vdash M : \tau]\!] \in \mathrm{R}(s[\![\tau]\!]) \\ s[\![\Gamma \vdash M : \tau]\!] : s[\![\Gamma]\!] \to \mathrm{R}s[\![\tau]\!] \end{split} \qquad \begin{array}{l} s[\![M]\!](i) = \mathsf{value} \ M \ \mathsf{returns} \\ \mathsf{when} \ i \ \mathsf{in} \ \mathsf{the cel} \end{split}$$

13/59

 $(\mathsf{Fin}, \mathrm{R}, \textit{s}) \text{ is not fully abstract} \quad \texttt{[Matache & Staton]}$

(Fin, R, s) is not fully abstract [Matache & Staton]
M, M' : ((1
$$\rightarrow$$
 bool) \rightarrow bool) \rightarrow bool
apply f : (1 \rightarrow bool) \rightarrow bool to λx . tt
then to λx . ff
then take the disjunction
M := λ f. (f (λx . tt)) \vee (f (λx . ff))

```
(Fin, R, s) is not fully abstract [Matache & Staton]
M, M' : ((1 \rightarrow bool) \rightarrow bool) \rightarrow bool
# apply f : (1 \rightarrow bool) \rightarrow bool to \lambda x. tt
   then to \lambda x . ff
#
#
   then take the disjunction
\mathsf{M} := \lambda f \cdot (f (\lambda x \cdot tt)) \vee (f (\lambda x \cdot ff))
# apply f to read then to
#
   the function negating the read value
#
   then take the disjunction
M' := \lambda f . (f read) \lor (f (\lambda x . \neg (read x)))
```

Intuitively, $M \simeq_{\mathrm{ctx}} M'$. But...

 $\begin{array}{ll} (\mathsf{Fin},\mathrm{R},s) \text{ is not fully abstract} & [\mathsf{Matache \& Staton}] \\ \\ \mathsf{Have:} \\ & s[\![M]\!], s[\![M']\!] \in \mathrm{R}\big(\big((1 \Rightarrow \mathrm{R2}) \Rightarrow \mathrm{R2}\big) \Rightarrow \mathrm{R2}\big) \end{array}$

(Fin, R, s) is not fully abstract [Matache & Staton]
Have:

$$s[\![M]\!], s[\![M']\!] \in R(((1 \Rightarrow R2) \Rightarrow R2) \Rightarrow R2)$$

Take $\kappa : (1 \Rightarrow R2) \rightarrow R2$:
 $\kappa(g) := \begin{cases} const_1 & \text{if } g(*) = const_1 \\ const_0 & \text{else} \end{cases}$
Then
 $s[\![M]\!](i)(\kappa)(j) = 1 \neq 0 = s[\![M']\!](i)(\kappa)(j)$

The model describes behaviours Λ_{ROS} cannot express

The model describes behaviours Λ_{ROS} cannot express

$$\kappa(g) := \begin{cases} \operatorname{const}_1 & \text{if } g(*) = \operatorname{const}_1 \\ \operatorname{const}_0 & \text{else} \end{cases}$$

$$\kappa \text{ knows how } g \text{ behaves} \\ \text{both when the cell contains 0} \\ \text{and when it contains 1} \end{cases}$$

$$State \text{ is read-only} \\ - \text{ programs can't do this!}$$

The model describes behaviours Λ_{ROS} cannot express

$$\kappa(g) := \begin{cases} \operatorname{const}_1 & \text{if } g(*) = \operatorname{const}_1 \\ \operatorname{const}_0 & \text{else} \end{cases}$$

$$\kappa \text{ knows how } g \text{ behaves} \\ \text{both when the cell contains 0} \\ \text{and when it contains 1} \end{cases}$$

$$State is read-only \\ - \operatorname{programs can't do this!}$$

 κ is a counterexample to contextual equivalence

A refined model $(\mathbb{L}, \hat{\mathrm{R}}, t)$

Idea:

- pair each set with relations R_0 and R_1
- restrict to functions preserving these relations

preserving $R_i \longrightarrow$ respecting behaviour when cell contains i

A refined model $(\mathbb{L}, \hat{\mathrm{R}}, t)$

Idea:

- pair each set with relations R_0 and R_1
- restrict to functions preserving these relations

preserving $R_i \longrightarrow$ respecting behaviour when cell contains i

A refined model $(\mathbb{L}, \hat{\mathrm{R}}, t)$

Idea:

- pair each set with relations R_0 and R_1
- restrict to functions preserving these relations

preserving $R_i \longrightarrow$ respecting behaviour when cell contains i

```
The cartesian closed category \mathbb{L}

objects: triples (\underline{X}, R_0, R_1) \longrightarrow \underbrace{X}_{R_i} \in \operatorname{Fin}_{R_i} \subseteq \underline{X}^2

maps (\underline{X}, R_0, R_1) \rightarrow (\underline{Y}, S_0, S_1):

maps f : \underline{X} \rightarrow \underline{Y} preserving the relations

(x, x') \in R_i \implies (f x, f x') \in S_i

for i = 1, 2
```

The cartesian closed category \mathbb{L} objects: triples $(\underline{X}, R_0, R_1)$ maps $(\underline{X}, R_0, R_1) \rightarrow (\underline{Y}, S_0, S_1)$:maps $f : \underline{X} \rightarrow \underline{Y}$ preserving the relations

The cartesian closed category \mathbb{L} objects: triples (X, R_0, R_1) maps $(X, R_0, R_1) \to (Y, S_0, S_1)$: maps $f : \underline{X} \to \underline{Y}$ preserving the relations The monad $\hat{R} \longrightarrow$ defined by $\top \top$ -lifting $\hat{\mathrm{R}}(\underline{Y}, S_0, S_1) = \left(2 \Rightarrow \underline{Y}, \hat{\mathrm{R}}(S_0), \hat{\mathrm{R}}(S_1)\right) \xrightarrow{}$ $(h, h') \in \hat{\mathcal{R}}(S_i)$ \iff $(hi, h'i) \in S_i$

The interpretation t

$$\begin{split} t(\text{bool}) &= \left(2, \{(0,0), (1,1)\}, \{(0,0), (1,1)\}\right) \\ t(\text{read}) &= s[\![\text{read}]\!] \dashrightarrow \text{already preserves the relations} \end{split}$$

 κ is not a morphism in $\mathbb{L}!$

κ is not a morphism in L!
↓
we've removed a counterexample
to contextual equivalence

This can **never** be enough

This can **never** be enough

1. Suppose $(\mathbb{L}, \hat{\mathrm{R}}, t)$ is fully abstract

This can **never** be enough

1. Suppose $(\mathbb{L}, \hat{\mathbf{R}}, t)$ is fully abstract 2. ... so $t[\![M]\!] = t[\![M']\!]$

This can **never** be enough 1. Suppose $(\mathbb{L}, \hat{\mathbb{R}}, t)$ is fully abstract 2. ... so $t[\![M]\!] = t[\![M']\!]$ 3. Then $s[\![M]\!] = U(t[\![M]\!]) = U(t[\![M']\!]) = s[\![M']\!]$

This can **never** be enough \longrightarrow relations are never sufficient 1. Suppose $(\mathbb{L}, \hat{\mathbb{R}}, t)$ is fully abstract 2. ... so $t[\![M]\!] = t[\![M']\!]$ 3. Then $s[\![M]\!] = U(t[\![M]\!]) = U(t[\![M']\!]) = s[\![M']\!]$

$$\kappa \in s\llbracket (1 \to \mathsf{bool}) \to \mathsf{bool} \rrbracket = U(t\llbracket (1 \to \mathsf{bool}) \to \mathsf{bool} \rrbracket)$$

$$\begin{split} \kappa \in s\llbracket(1 \to \text{bool}) \to \text{bool}\rrbracket &= U(t\llbracket(1 \to \text{bool}) \to \text{bool}\rrbracket) \\ & \Downarrow \\ t\llbracket M\rrbracket, t\llbracket M'\rrbracket : t\llbracket(1 \to \text{bool}) \to \text{bool}\rrbracket \to \hat{R}(t\llbracket \text{bool}\rrbracket) \\ & \text{ can still disagree on } \kappa! \end{split}$$

$$\kappa \in s[\![(1 \to \text{bool}) \to \text{bool}]\!] = U(t[\![(1 \to \text{bool}) \to \text{bool}]\!])$$

$$\downarrow$$

$$t[\![M]\!], t[\![M']\!] : t[\![(1 \to \text{bool}) \to \text{bool}]\!] \to \hat{R}(t[\![\text{bool}]\!])$$
can still disagree on κ !

 κ is <u>not</u> in the hom-sets in $\mathbb L$

$$\kappa \in s[\![(1 \to \text{bool}) \to \text{bool}]\!] = U(t[\![(1 \to \text{bool}) \to \text{bool}]\!])$$

$$\downarrow$$

$$t[\![M]\!], t[\![M']\!] : t[\![(1 \to \text{bool}) \to \text{bool}]\!] \to \hat{R}(t[\![\text{bool}]\!])$$
can still disagree on κ !

 κ is <u>not</u> in the hom-sets in $\mathbb L$ but κ is in the function spaces in $\mathbb L$

other counterexamples

Removing κ from the function space

Removing κ from the function space

 $\Rightarrow \mathbb{L} \text{ is not well-pointed}$ $[f = g \text{ iff } f \circ \gamma = g \circ \gamma$ $for all global elements <math>\gamma$]

Removing κ from the function space

Observation $\rightsquigarrow \kappa$ appears as a shadow! We have $\kappa \in U(t[[(1 \rightarrow bool) \rightarrow bool]])$ but there is no global element in \mathbb{L} $\gamma : 1 \rightarrow t[[(1 \rightarrow bool) \rightarrow bool]]$ such that $\gamma(*) = \kappa$.

 $\Rightarrow \mathbb{L} \text{ is not well-pointed}$ $[f = g \text{ iff } f \circ \gamma = g \circ \gamma$ for all global elements γ]

Solution: restrict to things named by a global element

Solution: restrict to things named by a global element 1. for $(\underline{X}, R_0, R_1) \in \mathbb{L}$, $x \in \underline{X}$ is concrete if $\[x^n : * \mapsto x : 1 \rightarrow (\underline{X}, R_0, R_1) \]$ is a map in \mathbb{L} ; 2. $(\underline{X}, R_0, R_1) \in \mathbb{L}$ is concrete if every $x \in \underline{X}$ is concrete. Solution: restrict to things named by a global element 1. for $(\underline{X}, R_0, R_1) \in \mathbb{L}$, $x \in \underline{X}$ is concrete if ${}^rx^r : * \mapsto x : 1 \to (\underline{X}, R_0, R_1)$ is a map in \mathbb{L} ; 2. $(\underline{X}, R_0, R_1) \in \mathbb{L}$ is concrete if every $x \in \underline{X}$ is concrete.

Explicitly: for every $x \in \underline{X}$, the pair $(x, x) \in R_0$ and $(x, x) \in R_1$.

 $\mathbb{C}=\mathsf{full}$ subcategory of \mathbb{L} of concrete objects

$$(X \Rightarrow_{\mathbb{C}} Y) = \mathrm{H}(X \Rightarrow_{\mathbb{L}} Y)$$

$$(X \Rightarrow_{\mathbb{C}} Y) = H(X \Rightarrow_{\mathbb{L}} Y)$$
$$f \in UH(X \Rightarrow_{\mathbb{L}} Y)$$
$$iff f \in U(X \Rightarrow_{\mathbb{L}} Y)$$
$$and \exists a \text{ global element in } \mathbb{L} \text{ corresponding to } f$$

$$(X \Rightarrow_{\mathbb{C}} Y) = H(X \Rightarrow_{\mathbb{L}} Y)$$
$$U(X \Rightarrow_{\mathbb{C}} Y) = UH(X \Rightarrow_{\mathbb{L}} Y) \cong \mathbb{L}(X, Y)$$

$$(X \Rightarrow_{\mathbb{C}} Y) = \mathrm{H}(X \Rightarrow_{\mathbb{L}} Y)$$

 $U(X \Rightarrow_{\mathbb{C}} Y) = U\mathrm{H}(X \Rightarrow_{\mathbb{L}} Y) \cong \mathbb{L}(X, Y)$

 \longrightarrow concreteness removes κ from the function space

Our new semantic model:

Our new semantic model:

1. CCC $\mathbb C$

Our new semantic model:

- 1. CCC $\mathbb C$
- 2. monad $H\hat{R}j$

Our new semantic model:

- 1. CCC $\mathbb C$
- 2. monad $H\hat{R}j$
- 3. interpretation t by restriction

Our new semantic model:

- 1. CCC $\mathbb C$
- 2. monad $H\hat{R}j$
- 3. interpretation t by restriction

Aim: remove bad morphism κ

- 1. from hom-sets \rightsquigarrow [logical] relations
- 2. from function spaces \rightsquigarrow concreteness

Success?

Our new semantic model:

- 1. CCC $\mathbb C$
- 2. monad $H\hat{R}j$
- 3. interpretation t by restriction

Aim: remove bad morphism κ

- 1. from hom-sets \rightsquigarrow [logical] relations
- 2. from function spaces \rightsquigarrow concreteness

But $(\mathbb{C}, \mathrm{H}\hat{\mathrm{R}}j, t)$ is not fully abstract \leadsto need stronger relations!

Question:

how can we soup up \mathbb{C} to remove every bad morphism?

Question:

how can we soup up ${\mathbb C}$ to remove every bad morphism?

Want to identify a class of relations such that

f preserves those relations \implies f is not a bad morphism

Question:

how can we soup up ${\mathbb C}$ to remove every bad morphism?

Want to identify a class of relations such that

f preserves those relations \implies f is not a bad morphism

A sufficient condition:

 $f = s[\![K]\!]$ for some K

Question:

how can we soup up ${\mathbb C}$ to remove every bad morphism?

Want to identify a class of relations such that

f preserves those relations \implies f is not a bad morphism

A sufficient condition:

f = s[[K]] for some $K \longrightarrow f$ is definable

1. the model we've just seen, abstractly

- $1. \ \mbox{the model}$ we've just seen, abstractly
- 2. restricting to definable morphisms

- $1. \ \mbox{the model}$ we've just seen, abstractly
- 2. restricting to definable morphisms
- 3. the abstract OHR construction \leadsto follows pattern just seen

- $1. \ \mbox{the model}$ we've just seen, abstractly
- 2. restricting to definable morphisms
- 3. the abstract OHR construction \leadsto follows pattern just seen
- 4. getting full abstraction

Constructing $(\mathbb{C},\mathrm{H}\hat{\mathrm{R}}j,t)$: a recipe

A recipe for removing bad morphisms κ 1. Use relations \longrightarrow stops them being morphisms 2. Use concreteness \longrightarrow cuts them out function spaces

NB: two relations voice two categories on RHS

Every definable
$$f : s[[\Gamma]] \to T(s[[\sigma]])$$
 lifts to $f : t[[\Gamma]] \to \hat{T}(t[[\sigma]])$
How can we change this construction so only definable maps lift?

$\mathbb{K}_{\mathcal{M},\textit{F}},$ abstractly

 $\mathbb{K}_{\mathcal{M},F}$, abstractly

over Set with $|F\Gamma| = n \rightsquigarrow R$ an *n*-ary relation

over Set with $|F\Gamma| = n \rightsquigarrow R$ an *n*-ary relation

Fact:
$$\mathbb{K}_{\mathcal{M},F}$$
 is a CCC
Notation: $(W, R) \Rightarrow (X, S) := (W \Rightarrow X, R \supset S)$

Fact:
$$\mathbb{K}_{\mathcal{M},F}$$
 is a CCC
Notation: $(W, R) \Rightarrow (X, S) := (W \Rightarrow X, R \supset S)$
 $(f_1, \dots, f_n) \in (R \supset S)(\Gamma)$ iff, for any $\rho : \Gamma \rightarrow \Delta$,
 $(x_1, \dots, x_m) \in R(\Delta) \subseteq W^{F\Gamma} \Rightarrow (f_{\rho(1)}x_1, \dots, f_{\rho(m)}x_m) \in S(\Delta) \subseteq X^{F\Delta}$
35 (be

$$\text{DEF}_{\sigma}(\Gamma) := \left\{ s \llbracket \Gamma \vdash M : \sigma \rrbracket \mid M \text{ is derivable} \right\}$$

$$\mathrm{DEF}_{\sigma}(\Gamma) := \left\{ s[\![\Gamma \vdash M : \sigma]\!] \mid M \text{ is derivable} \right\}$$

$$\mathrm{DEF}_{\sigma}(\Gamma) := \left\{ s\llbracket \Gamma \vdash M : \sigma \rrbracket \mid M \text{ is derivable} \right\}$$

 $f: s\llbracket \Gamma \rrbracket \to s\llbracket \sigma \rrbracket$ is definable $\iff f: \hat{s}\llbracket \Gamma \rrbracket \to \hat{s}\llbracket \sigma \rrbracket$

the definable maps are exactly those that lift to $(\mathbb{K}_{\mathcal{M},s[\![-]\!]},\hat{s})$

What about the monad?

Restricting to values

for $(TX, R) \in \mathbb{K}_{\mathcal{M}, F}$

$$R^{\mathrm{val}}(\Gamma) := \left\{ f \mid \eta_X \circ f \in R(\Gamma) \right\}$$

so $(X, R^{\mathrm{val}}) \in \mathbb{K}_{\mathcal{M}, F}$

Restricting to values

for $(TX, R) \in \mathbb{K}_{\mathcal{M}, F}$

$$R^{\mathrm{val}}(\Gamma) := \left\{ f \mid \eta_X \circ f \in R(\Gamma) \right\}$$

so $(X, R^{\mathrm{val}}) \in \mathbb{K}_{\mathcal{M}, F}$

the definable maps are exactly those that lift to $(\mathbb{K}_{\mathcal{M},s[\![-]\!]},\hat{T},\hat{s})$

The route so far

- $\checkmark\,$ the model we've just seen, abstractly
- $\checkmark\,$ restricting to definable morphisms
- 3. the abstract OHR construction \leadsto follows pattern just seen
- 4. getting full abstraction

The abstract OHR construction

A recipe for removing bad morphisms κ

- 1. Use relations \cdots stops them being morphisms
- 2. Use concreteness \longrightarrow cuts them out function spaces

A recipe for removing bad morphisms κ

- 1. Use relations \cdots stops them being morphisms
- 2. Use concreteness \longrightarrow cuts them out function spaces

NB: I-many categories on RHS \leadsto I-many relations

Key trick: choose \mathbb{I} , F, \mathbb{B}_i and interpretation \hat{s} so that $\exists i_0 \in \mathbb{I}$ with $\overline{\hat{s}} \llbracket \sigma \rrbracket_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}}$ and $\overline{\mathrm{W}} \hat{s} \llbracket \sigma \rrbracket_{i_0} = \mathrm{DEF}_{\sigma}$

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

$$\overline{\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $f: \hat{s}\llbracket \Gamma \rrbracket \to \mathrm{W} \hat{s}\llbracket \sigma \rrbracket$ preserves every relation, . . .

$$\overline{\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $f: \hat{s}\llbracket \Gamma \rrbracket \to \mathrm{W} \hat{s}\llbracket \sigma \rrbracket$ preserves every relation, . . .

$$\overline{\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $f: \hat{s}\llbracket \Gamma \rrbracket \to \mathrm{W} \hat{s}\llbracket \sigma \rrbracket$ preserves every relation, . . .

$$\overline{\hat{s}}[\![\sigma]\!]_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}}[\![\sigma]\!]_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$f: \hat{s}[\![\Gamma]\!] \to W \hat{s}[\![\sigma]\!]$$
 preserves every relation, ...,
so f preserves DEF...

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f : \hat{s}[\![\Gamma]\!] \to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable} \end{split}$$

$$\overline{\hat{s}}[\![\sigma]\!]_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \text{ and } \overline{\mathrm{W}\hat{s}}[\![\sigma]\!]_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $\begin{aligned} f : \hat{s}[\![\Gamma]\!] &\to W \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable } & \leadsto \text{ so every map is definable!} \end{aligned}$

1. \mathbb{O} is always well-pointed;

- 1. \mathbb{O} is always well-pointed;
- 2. any well-pointed model with every morphism definable is fully abstract.

- 1. \mathbb{O} is always well-pointed;
- 2. any well-pointed model with every morphism definable is fully abstract.
- \Rightarrow it remains to instantiate the construction

- 1. \mathbb{O} is always well-pointed;
- 2. any well-pointed model with every morphism definable is fully abstract.
 - \Rightarrow it remains to instantiate the construction

Strategy: see what we need as we go along!

Getting full abstraction

Key trick: Choose data and an interpretation \hat{s} so that $\exists i_0 \in \mathbb{I}$ such that

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{so } f \text{ preserves DEF...} \\ &\text{so } f \text{ is definable} \end{split}$$

Key trick: Choose data and an interpretation \hat{s} so that $\exists i_0 \in \mathbb{I}$ such that

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $\begin{aligned} f : \hat{s}[\![\Gamma]\!] \to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable} \end{aligned}$

Key trick: Choose data and an interpretation \hat{s} so that $\exists i_0 \in \mathbb{I}$ such that

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $\begin{aligned} f : \hat{s}[\![\Gamma]\!] \to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable} \end{aligned}$

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

 $\begin{aligned} f : \hat{s}[\![\Gamma]\!] &\to W \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable} \end{aligned}$

then:
$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \text{ and } \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{so } f \text{ preserves DEF...} \\ &\text{so } f \text{ is definable} \end{split}$$

Chickens and eggs

$$\overline{\hat{\boldsymbol{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{\boldsymbol{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{so } f \text{ preserves DEF...} \\ &\text{so } f \text{ is definable} \end{split}$$

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{ so } f \text{ preserves DEF...} \\ &\text{ so } f \text{ is definable} \end{split}$$

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{ so } f \text{ preserves DEF...} \\ &\text{ so } f \text{ is definable} \end{split}$$

$$\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{aligned} f : \hat{s}[\![\Gamma]\!] &\to \mathrm{W}\hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ \text{ so } f \text{ preserves DEF...} \\ \text{ so } f \text{ is definable} \end{aligned}$$

$$\overline{\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_\sigma^{\mathrm{val}} \quad \text{and} \quad \overline{\mathrm{W}\hat{\mathfrak{s}}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_\sigma$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{so } f \text{ preserves DEF...} \\ &\text{so } f \text{ is definable} \end{split}$$

Chickens and eggs define a model (\mathbb{O}, W, \hat{s}) y construct the in which maps preserve DEF predicate every possible relation identify DEF as one of the preserved predicates

$$\overline{\hat{s}}[\![\sigma]\!]_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \quad \mathrm{and} \quad \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$$

then:

$$\begin{split} f: \hat{s}[\![\Gamma]\!] &\to \mathrm{W} \hat{s}[\![\sigma]\!] \text{ preserves every relation, } \dots \\ &\text{so } f \text{ preserves DEF...} \\ &\text{so } f \text{ is definable} \end{split}$$

Chickens and eggs voic c.f. impredicativity

define a model (\mathbb{O}, W, \hat{s}) in which maps preserve every possible relation

 $\mathrm{DEF}\xspace$ predicate

identify DEF as one of the preserved predicates

Need to quantify over relations on \mathbb{O} before constructing \mathbb{O}

Need to quantify over relations on $\mathbb O$ before constructing $\mathbb O$

Solution: relations on \mathbb{O} are relations on \mathcal{M} !

Aim:

define a model (\mathbb{O}, W, \hat{s}) in which maps preserve every possible relation over $(\mathcal{M}, \mathcal{T}, s)$

Aim:

define a model (\mathbb{O}, W, \hat{s}) in which maps preserve every possible relation over $(\mathcal{M}, \mathcal{T}, s)$

Tactic:

- 1. use ${\mathbb I}$ to quantify over all possible relations so that ${\rm DEF}$ must appear
- 2. define interpretation to look it up

Aim:

```
define a model (\mathbb{O}, W, \hat{s}) in which maps preserve every possible relation over (\mathcal{M}, \mathcal{T}, s)
```

Tactic:

- 1. use ${\mathbb I}$ to quantify over all possible relations so that ${\rm DEF}$ must appear
- 2. define interpretation to look it up

Then: will get $\exists i_0 \in \mathbb{I}$

 $\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}} \text{ and } \overline{\mathrm{W}\hat{s}[\![\sigma]\!]}_{i_0} = \mathrm{DEF}_{\sigma}$

Tactic:

- 1. use ${\mathbb I}$ to quantify over all possible relations so that ${\rm DEF}$ must appear
- 2. define interpretation to look it up

54/59

Bake all the data into ${\ensuremath{\mathbb I}}$

```
Need from every i \in \mathbb{I}:

1. category \mathbb{A}_i

2. functor F_i : \operatorname{Con}^{\operatorname{op}} \to \mathcal{M}

3. a lifting \hat{T}_i of T to \mathbb{K}_{\mathcal{M}, F_i}

4. an interpretation r in \operatorname{Conc}(\mathbb{K}_{\mathcal{M}, F_i}) \hookrightarrow \mathbb{K}_{\mathcal{M}, F_i}
```

```
I∋?
```

Bake all the data into ${\ensuremath{\mathbb I}}$

```
Need from every i \in \mathbb{I}:
    1. category \mathbb{A}_i
    2. functor F_i: Con<sup>op</sup> \rightarrow \mathcal{M}
    3. a lifting \hat{T}_i of T to \mathbb{K}_{\mathcal{M},F_i}
    4. an interpretation r in \operatorname{Conc}(\mathbb{K}_{\mathcal{M},F_i}) \hookrightarrow \mathbb{K}_{\mathcal{M},F_i}
   1. set Sites \ni Con<sup>op</sup>
```

Bake all the data into ${\mathbb I}$

```
Need from every i \in \mathbb{I}:
    1. category \mathbb{A}_i
    2. functor F_i: Con<sup>op</sup> \rightarrow \mathcal{M}
    3. a lifting \hat{T}_i of T to \mathbb{K}_{\mathcal{M},F_i}
    4. an interpretation r in \operatorname{Conc}(\mathbb{K}_{\mathcal{M},F_i}) \hookrightarrow \mathbb{K}_{\mathcal{M},F_i}
   1. set Sites \ni Con<sup>op</sup>
   2. for every \mathbb{A} \in \text{Sites},
                                               \operatorname{Func}(\mathbb{A}) = [\mathbb{A}, \mathcal{M}],
```

Bake all the data into ${\mathbb I}$

Need from every $i \in \mathbb{I}$: 1. category \mathbb{A}_i 2. functor F_i : Con^{op} $\rightarrow \mathcal{M}$ 3. a lifting \hat{T}_i of T to $\mathbb{K}_{\mathcal{M},F_i}$ 4. an interpretation r in $\operatorname{Conc}(\mathbb{K}_{\mathcal{M},F_i}) \hookrightarrow \mathbb{K}_{\mathcal{M},F_i}$ 1. set Sites \ni Con^{op} 2. for every $\mathbb{A} \in \text{Sites}$, $\operatorname{Func}(\mathbb{A}) = [\mathbb{A}, \mathcal{M}],$ 3. for every $F \in \operatorname{Func}(\mathbb{A}) = [\mathbb{A}, \mathcal{M}]$, $Lift(\mathbb{A}, F) = \{monad \ liftings \ to \ \mathbb{K}_{\mathcal{M}, F}\}$ $\mathbb{I} \ni \left(\mathbb{A} \in \operatorname{Sites}, F \in \operatorname{Fun}(\mathbb{A}), \, \hat{T} \in \operatorname{Lift}(\mathbb{A}, F), \dots \right)$

Bake all the data into ${\mathbb I}$

Need from every $i \in \mathbb{I}$: 1. category \mathbb{A}_i 2. functor $F_i : \operatorname{Con}^{\operatorname{op}} \to \mathcal{M}$ 3. a lifting \hat{T}_i of T to $\mathbb{K}_{\mathcal{M},F_i}$ 4. an interpretation r in $\operatorname{Conc}(\mathbb{K}_{\mathcal{M},F_i}) \hookrightarrow \mathbb{K}_{\mathcal{M},F_i}$ 1. set Sites \ni Con^{op} 2. for every $\mathbb{A} \in \text{Sites}$, $\operatorname{Func}(\mathbb{A}) = [\mathbb{A}, \mathcal{M}],$ 3. for every $F \in \operatorname{Func}(\mathbb{A}) = [\mathbb{A}, \mathcal{M}]$, $Lift(\mathbb{A}, F) = \{monad \ liftings \ to \ \mathbb{K}_{\mathcal{M}, F}\}$ 4. for $\hat{T} \in \text{Lift}(\mathbb{A}, F)$, Interp($\mathbb{A}, \mathcal{F}, \hat{\mathcal{T}}$) = {interpretations in Conc($\mathbb{K}_{\mathcal{M}, \mathcal{F}_i}$)}

 $\mathbb{I} \ni \left(\mathbb{A} \in \text{Sites}, F \in \text{Func}(\mathbb{A}), \hat{T} \in \text{Lift}(\mathbb{A}, F), r \in \text{Interp}(\mathbb{A}, F, \hat{T}) \right)_{\text{st}}$

1. set Sites
$$\ni$$
 Con^{op}
2. for every $\mathbb{A} \in$ Sites,
Func(\mathbb{A}) = [\mathbb{A} , \mathcal{M}],
3. for every $F \in$ Func(\mathbb{A}) = [\mathbb{A} , \mathcal{M}],
Lift(\mathbb{A} , F) = {monad liftings to $\mathbb{K}_{\mathcal{M},F}$ }
4. for $\hat{T} \in$ Lift(\mathbb{A} , F),
Interp(\mathbb{A} , F , \hat{T}) = {interpretations in Conc($\mathbb{K}_{\mathcal{M},F_i}$)}
 $\mathbb{I} \ni (\mathbb{A} \in$ Sites, $F \in$ Func(\mathbb{A}), $\hat{T} \in$ Lift(\mathbb{A} , F), $r \in$ Interp(\mathbb{A} , F , \hat{T}))

4. for $\hat{T} \in \text{Lift}(\mathbb{A}, F)$, $\text{Interp}(\mathbb{A}, F, \hat{T}) = \{\text{interpretations in } \text{Conc}(\mathbb{K}_{\mathcal{M}, F_i})\}$ $\mathbb{I} \ni \left(\mathbb{A} \in \text{Sites}, F \in \text{Func}(\mathbb{A}), \hat{T} \in \text{Lift}(\mathbb{A}, F), r \in \text{Interp}(\mathbb{A}, F, \hat{T})\right)$

4. for $\hat{T} \in \text{Lift}(\mathbb{A}, F)$, $\text{Interp}(\mathbb{A}, F, \hat{T}) = \{\text{interpretations in } \text{Conc}(\mathbb{K}_{\mathcal{M}, F_i})\}$ $\mathbb{I} \ni \left(\mathbb{A} \in \text{Sites}, F \in \text{Func}(\mathbb{A}), \hat{T} \in \text{Lift}(\mathbb{A}, F), r \in \text{Interp}(\mathbb{A}, F, \hat{T})\right)$

carriers: take the interpretation from $\mathcal{M} \rightsquigarrow \hat{s}[\![\beta]\!] := s[\![\beta]\!]$
Defining the semantic interpretation: just look it up in I!

4. for $\hat{T} \in \text{Lift}(\mathbb{A}, F)$, $\text{Interp}(\mathbb{A}, F, \hat{T}) = \{\text{interpretations in } \text{Conc}(\mathbb{K}_{\mathcal{M}, F_i})\}$ $\mathbb{I} \ni \left(\mathbb{A} \in \text{Sites}, F \in \text{Func}(\mathbb{A}), \hat{T} \in \text{Lift}(\mathbb{A}, F), r \in \text{Interp}(\mathbb{A}, F, \hat{T})\right)$

carriers: take the interpretation from $\mathcal{M} \rightsquigarrow \hat{\underline{s}}[\![\beta]\!] := s[\![\beta]\!]$ relations: use what the index gives:

 $\overline{\hat{s}[\![\beta]\!]}(\mathbb{A}, F, \hat{T}, r) := \left(\text{relation part of } r(\beta) \right)$

Want:
$$\overline{\hat{s}[\sigma]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}}$$

Want: $\overline{\hat{s}}[\sigma]_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}}$ Note: $\mathrm{DEF}_{\sigma}^{\mathrm{val}}(\Gamma) \subseteq \mathbb{O}(\hat{s}[\Gamma], \mathrm{W}\hat{s}[\sigma])$ Want: $\overline{\hat{s}}\llbracket \sigma \rrbracket_{i_0} = \mathrm{DEF}_{\sigma}^{\mathrm{val}}$ Note: $\mathrm{DEF}_{\sigma}^{\mathrm{val}}(\Gamma) \subseteq \mathbb{O}(\hat{s}\llbracket \Gamma \rrbracket, \mathrm{W} \hat{s}\llbracket \sigma \rrbracket) \subseteq \mathcal{M}(U \hat{s}\llbracket \Gamma \rrbracket, U \mathrm{W} \hat{s}\llbracket \sigma \rrbracket)$ Want: $\widehat{s}\llbracket \sigma \rrbracket_{i_0} = \text{DEF}_{\sigma}^{\text{val}}$ Note: $\text{DEF}_{\sigma}^{\text{val}}(\Gamma) \subseteq \mathbb{O}(\widehat{s}\llbracket \Gamma \rrbracket, \text{W} \widehat{s}\llbracket \sigma \rrbracket) \subseteq \mathcal{M}(U \widehat{s}\llbracket \Gamma \rrbracket, U \text{W} \widehat{s}\llbracket \sigma \rrbracket)$ Picking the index i_0 Want: $\overline{\hat{s}[\sigma]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}}$

Note: $\text{DEF}_{\sigma}^{\text{val}}(\Gamma) \subseteq \mathbb{O}(\hat{s}\llbracket\Gamma\rrbracket, \text{W}\hat{s}\llbracket\sigma\rrbracket) \subseteq \mathcal{M}(U\hat{s}\llbracket\Gamma\rrbracket, U\text{W}\hat{s}\llbracket\sigma\rrbracket)$

Picking the index i_0

4.
$$r(\beta) := (s[\beta], \text{DEF}_{\beta}^{\text{val}})$$

Want: $\overline{\hat{s}[\sigma]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}}$

Note: $\text{DEF}_{\sigma}^{\text{val}}(\Gamma) \subseteq \mathbb{O}(\hat{s}\llbracket\Gamma\rrbracket, \text{W}\hat{s}\llbracket\sigma\rrbracket) \subseteq \mathcal{M}(U\hat{s}\llbracket\Gamma\rrbracket, U\text{W}\hat{s}\llbracket\sigma\rrbracket)$

Picking the index i_0

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{\mathfrak{s}}} \mathbb{D} \xrightarrow{U} \mathcal{M})$
4. $r(\beta) := (\mathfrak{s}[\beta], \operatorname{DEF}_{\beta}^{\operatorname{val}})$

Want: $\overline{\hat{s}[\sigma]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}}$

Note: $\text{DEF}_{\sigma}^{\text{val}}(\Gamma) \subseteq \mathbb{O}(\hat{s}\llbracket\Gamma\rrbracket, \text{W}\hat{s}\llbracket\sigma\rrbracket) \subseteq \mathcal{M}(U\hat{s}\llbracket\Gamma\rrbracket, U\text{W}\hat{s}\llbracket\sigma\rrbracket)$

Picking the index i_0

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{s}} \mathbb{D} \xrightarrow{U} \mathcal{M})$
3. \hat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[\![\beta]\!], \operatorname{DEF}_{\beta}^{\operatorname{val}})$

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{s}} \mathbb{I} \to \mathbb{O} \to \mathcal{M})$
3. \hat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[\![\beta]\!], \operatorname{DEF}_{\beta}^{\operatorname{val}})$
carriers: take the interpretation from $\mathcal{M} \dashrightarrow \hat{s}[\![\beta]\!] := s[\![\beta]\!]$
relations: use what the index gives:
 $\overline{s}[\![\beta]\!](\mathbb{A}, F, \hat{T}, r) := (\text{relation part of } r(\beta))$

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\widehat{s}[[-]]} \mathbb{O} \xrightarrow{U} \mathcal{M})$
3. \widehat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[[\beta]], \operatorname{DEF}_{\beta}^{\operatorname{val}})$
carriers: take the interpretation from $\mathcal{M} \dashrightarrow \widehat{s}[[\beta]] := s[[\beta]]$
relations: use what the index gives:
 $\overline{s}[[\beta]](\mathbb{A}, F, \widehat{T}, r) := (\text{relation part of } r(\beta))$

Key lemma

For i_0 as above, and all $\sigma \in \text{Type}$: $\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}} \text{ and } \overline{\text{W}\hat{s}[\![\sigma]\!]}_{i_0} = \text{DEF}_{\sigma}$

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{s}} \mathbb{I} \longrightarrow \mathbb{O} \xrightarrow{U} \mathcal{M})$
3. \hat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[\![\beta]\!], \operatorname{DEF}_{\beta}^{\operatorname{val}})$
carriers: take the interpretation from $\mathcal{M} \dashrightarrow \hat{s}[\![\beta]\!] := s[\![\beta]\!]$
relations: use what the index gives:
 $\overline{s}[\![\beta]\!](\mathbb{A}, F, \hat{T}, r) := (\text{relation part of } r(\beta))$

Key lemma For i_0 as above, and all $\sigma \in \text{Type}$: $\overline{\hat{s}[\![\sigma]\!]}_{i_0} = \text{DEF}_{\sigma}^{\text{val}} \text{ and } \overline{\text{W}\hat{s}[\![\sigma]\!]}_{i_0} = \text{DEF}_{\sigma}$

Hence every $f : \hat{s}\llbracket \Gamma \rrbracket \to W \hat{s}\llbracket \sigma \rrbracket$ is definable

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{s}} \mathbb{I} \to \mathbb{O} \xrightarrow{U} \mathcal{M})$
3. \hat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[\![\beta]\!], \operatorname{DEF}_{\beta}^{\operatorname{val}})$
carriers: take the interpretation from $\mathcal{M} \dashrightarrow \hat{s}[\![\beta]\!] := s[\![\beta]\!]$
relations: use what the index gives:
 $\overline{s}[\![\beta]\!](\mathbb{A}, F, \hat{T}, r) := (\text{relation part of } r(\beta))$

Key lemma For i_0 as above, and all $\sigma \in \text{Type}$: $\overline{\hat{s}}[\![\sigma]\!]_{i_0} = \text{DEF}_{\sigma}^{\text{val}} \text{ and } \overline{\text{W}\hat{s}}[\![\sigma]\!]_{i_0} = \text{DEF}_{\sigma}$

Hence every $f : \hat{s}\llbracket \Gamma \rrbracket \to W \hat{s}\llbracket \sigma \rrbracket$ is definable Hence (\mathbb{O}, W, \hat{s}) is fully complete and well-pointed

1.
$$\mathbb{A} := \operatorname{Con}^{\operatorname{op}}$$

2. $F := (\operatorname{Con}^{\operatorname{op}} \xrightarrow{\hat{s}} \mathbb{I} \to \mathbb{O} \xrightarrow{U} \mathcal{M})$
3. \hat{T} chosen by $\top \top$ -lifting
4. $r(\beta) := (s[\![\beta]\!], \operatorname{DEF}_{\beta}^{\operatorname{val}})$
carriers: take the interpretation from $\mathcal{M} \dashrightarrow \hat{s}[\![\beta]\!] := s[\![\beta]\!]$
relations: use what the index gives:
 $\overline{s}[\![\beta]\!](\mathbb{A}, F, \hat{T}, r) := (\text{relation part of } r(\beta))$

Key lemma For i_0 as above, and all $\sigma \in \text{Type}$: $\overline{\hat{s}}[\![\sigma]\!]_{i_0} = \text{DEF}_{\sigma}^{\text{val}} \text{ and } \overline{\text{W}\hat{s}}[\![\sigma]\!]_{i_0} = \text{DEF}_{\sigma}$

Hence every $f : \hat{s}\llbracket \Gamma \rrbracket \to W \hat{s}\llbracket \sigma \rrbracket$ is definable Hence (\mathbb{O}, W, \hat{s}) is fully abstract

Summary and future work

1. Every map definable + well-pointedness \Rightarrow full abstraction

1. Every map definable + well-pointedness \Rightarrow full abstraction

 Definability is a logical relation; if f preserves DEF, then f is definable 1. Every map definable + well-pointedness \Rightarrow full abstraction

Definability is a logical relation;
 if *f* preserves DEF, then *f* is definable

3. Maps in O'Hearn-Riecke model O preserve enough relations

Summary and future work

- 1. Every map definable + well-pointedness \Rightarrow full abstraction
- Definability is a logical relation;
 if *f* preserves DEF, then *f* is definable
- 3. Maps in O'Hearn−Riecke model [®] preserve enough relations

Still to do

- 1. Weakening assumptions: well-pointedness, hull functor $\rm H,\,\ldots$
- 2. Checking examples: esp. presheaf models (names, ...)
- 3. Universal property?

Summary and future work

- 1. Every map definable + well-pointedness \Rightarrow full abstraction
- Definability is a logical relation; if *f* preserves DEF, then *f* is definable
- 3. Maps in O'Hearn-Riecke model O preserve enough relations

Still to do

- 1. Weakening assumptions: well-pointedness, hull functor ${\rm H},\,\ldots$
- 2. Checking examples: esp. presheaf models (names, ...)
- 3. Universal property?

preprint at cs.ox.ac.uk/people/philip.saville/home.html