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Slogan: models* go in, fully abstract models come out
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Contextual equivalence [Morris, Milner,. . . ]

Γ $ M »ctx M 1 : σ ðñ
CrMs ó V ðñ CrM 1s ó V
Cr´s any closed ground context

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence
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The quest for full abstraction

late 1960s roots of the definition
1975 Milner introduces full abstraction
1977 Plotkin: domains model for PCF is not fully abstract

80s & 90s attempts to classify “sequentiality” + lots more
late 90s games models,

O’Hearn & Riecke’s domains + logical relations model
21st C Marz, Riecke, Ehrhard et al., Matache et al., . . .

ù mainly focussed on languages with recursion
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This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates
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signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

e.g. small subcategory Setκ of Set
+ any monad
+ any interpretation

with a constant b for every b P sJβK
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signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of read-only state

e.g. subcategory Setκ of Set
+ reader monad R
+ JnatK “ N,

JboolK “ t0, 1u, . . .
e.g. base types nat, bool
+ true, false and n for n P N
+ read, . . .
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signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of an idealised probabilistic programming language

e.g. small sub-CCC of Qbs
+ probability monad
+ JrealK “ pR,ΣRq

e.g. base type real
+ sample, score and normalise
+ f for each measurable f

6 / 59



The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59



The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59



The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59



Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough
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Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

OHR construction =
same pattern, but with
every possible relation
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A motivating example: read-only state [Matache & Staton]

Idea [omitting sums for now]

1. A global, one-bit memory cell
2. You can read, but not write
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The signature
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t y p e s τ : := bool | τ ˚ τ | 1 | τ Ñ τ

te rms M : :=
# STLC

x # v a r i a b l e s
| (M,M) # produc t t yp e s
| πi(M)
| pq
| λ x . M # f u n c t i o n t yp e s
| M M

# p r i m i t i v e s
| tt # boo l ean v a l u e s
| ff
| ^ # boo l ean o p e r a t i o n s
| _
|  
| if M then M else M # branch i ng

# e f f e c t o p e r a t i o n s
| read : 1 Ñ boo l # read from the c e l l
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The semantic model
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A model pFin,R, sq

Idea:
1. Interpret programs as functions;
2. Parametrise by what’s in the cell.
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pFin,R, sq is not fully abstract [Matache & Staton]

Have:
sJMK, sJM 1K P R

``

p1ñ R2q ñ R2
˘

ñ R2
˘
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pFin,R, sq is not fully abstract [Matache & Staton]

Have:
sJMK, sJM 1K P R

``

p1ñ R2q ñ R2
˘

ñ R2
˘

Take κ : p1ñ R2q Ñ R2:

κpgq :“

#

const1 if gp˚q “ const1
const0 else

Then

sJMKpiqpκqpjq “ 1 ‰ 0 “ sJM 1Kpiqpκqpjq
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What goes wrong?

The model describes behaviours ΛROS cannot express

κ is a counterexample to contextual equivalence
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a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough
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A refined model pL, R̂, tq

Idea:
- pair each set with relations R0 and R1
- restrict to functions preserving these relations

preserving Ri ù respecting behaviour when cell contains i

The cartesian closed category L

objects: triples pX ,R0,R1q
X P Fin
Ri Ď X 2

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

px , x 1q P Ri ùñ pf x , f x 1q P Si
for i “ 1, 2
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The cartesian closed category L

objects: triples pX ,R0,R1q

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

The monad R̂ ù defined by JJ-lifting

R̂pY ,S0,S1q “
`

2ñ Y , R̂pS0q, R̂pS1q
˘

ph, h1q P R̂pSi q
ðñ ph i , h1 iq P Si

The interpretation t

tpboolq “
`

2, tp0, 0q, p1, 1qu, tp0, 0q, p1, 1qu
˘

tpreadq “ sJreadK ù already preserves the relations
. . .
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One step closer to full abstraction?

κ is not a morphism in L!

ó

we’ve removed a
counterexample

to contextual equivalence

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful
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One step closer to full abstraction?

All the structure is preserved:

. . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful

ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※
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2. . . . so tJMK “ tJM 1K
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Diagnosing the problem

κ P sJp1Ñ boolq Ñ boolK “ UptJp1Ñ boolq Ñ boolKq

ó

tJMK, tJM 1K : tJp1Ñ boolq Ñ boolK Ñ R̂ptJboolKq
can still disagree on κ!

κ is not in the hom-sets in L but κ is in the function spaces in L
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a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough
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Removing κ from the function space

Observation

ù κ appears as a shadow!

We have
κ P UptJp1Ñ boolq Ñ boolKq

but there is no global element in L

γ : 1Ñ tJp1Ñ boolq Ñ boolK

such that γp˚q “ κ.
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We have
κ P UptJp1Ñ boolq Ñ boolKq

but there is no global element in L

γ : 1Ñ tJp1Ñ boolq Ñ boolK

such that γp˚q “ κ.

ñ L is not well-pointed
[f “ g iff f ˝ γ “ g ˝ γ

for all global elements γ]
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Solution: restrict to things named by a global element

C = full subcategory of L of concrete objects
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Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects
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xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;
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C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

ù concreteness removes κ from the function space
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of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

f P UH
`

X ñL Y
˘

iff f P U
`

X ñL Y
˘

and D a global element in L corresponding to f

ù concreteness removes κ from the function space
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Success!

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!
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Success?

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!
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We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K
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We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K ù f is definable
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The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction
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Constructing pC,HR̂j , tq: a recipe
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A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS
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A recipe for removing bad morphisms κ

Fin

R

L

R̂

C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq
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if f definable
here

then f definable
here
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A recipe for removing bad morphisms κ
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C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod

X ÞÑ pX ,X q

x

if f definable
here

then f definable
here

Every definable f : sJΓK Ñ T psJσKq lifts to f : tJΓK Ñ T̂ ptJσKq

How can we change this construction so only definable maps lift?
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KM,F , abstractly

Idea:
replace relations on sets . . .

with families of relations indexed by contexts

Fin

R

L SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x
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KM,F , abstractly

Idea:
replace relations on sets . . .
with families of relations indexed by contexts

KM,F

M yCon
objects: contexts
maps: context renamings

SubpyConq

U cod

λX .MpF p´q ,X q

x

33 / 59



The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation
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Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq

ŝ

s

U cod

λX .MpsJ´K ,X q
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37 / 59



Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ
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What about the monad?
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T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“
 

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F
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ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

40 / 59
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The route so far

X the model we’ve just seen, abstractly

X restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction
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The abstract OHR construction
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A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations
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f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .

so f is definable

ù so every map is definable!

45 / 59



M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.
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Fact:

1. O is always well-pointed;
2. any well-pointed model with every morphism definable

is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!
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Getting full abstraction
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Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

MT

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j
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that
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so f is definable

Chickens and eggs

ù c.f. impredicativity
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Chickens and eggs ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

Need to quantify over relations on O before constructing O

Solution: relations on O are relations on M!
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M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59



M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM

so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59



M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59



M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q ĎMpUF pΓq,X q

51 / 59



M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q ĎMpUF pΓq,X q

ù relations over O induce relations over M!
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define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates
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define a model pO,W, ŝq
in which maps preserve
every possible relation

over pM,T , sq

construct the
DEF predicate

identify DEF as one
of the preserved predicates
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Aim:
define a model pO,W, ŝq in which maps preserve
every possible relation over pM,T , sq
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1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up
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1. use I to quantify over all possible relations
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Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

ù to define our semantic interpretation in O
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Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

I Q ?
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2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi
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1. set Sites Q Conop
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FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “ tmonad liftings to KM,F u

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “ tinterpretations in ConcpKM,Fi

qu

I Q pA P Sites, . . . q
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Defining the semantic interpretation: just look it up in I!
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Defining the semantic interpretation: just look it up in I!

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “

 

interpretations in ConcpKM,Fi
q
(

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

carriers: take the interpretation from M ù ŝJβK :“ sJβK

relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘
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Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘
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1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ
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