
Constructing fully-abstract models
of effectful λ-calculi

Ohad Kammar: and Shin-ya Katsumata˚ and Philip Saville;

:School of Informatics
University of Edinburgh

*National Institute of Informatics
Tokyo

;Department of Computer Science
University of Oxford

preprint at cs.ox.ac.uk/people/philip.saville/home.html

1 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Slogan: models* go in, fully abstract models come out

2 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ ðñ
CrMs ó V ðñ CrM 1s ó V
Cr´s any closed ground context

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ ðñ
CrMs ó V ðñ CrM 1s ó V
Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ
w.r.t. a semantics J´K

ðñ
JCrMsK “ JCrM 1sK

Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ
w.r.t. a semantics J´K

ðñ
JCrMsK “ JCrM 1sK

Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

Reasoning about »ctx is hard! Want semantic techniques round this

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ
w.r.t. a semantics J´K

ðñ
JCrMsK “ JCrM 1sK

Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1

ù immediate!

Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ
w.r.t. a semantics J´K

ðñ
JCrMsK “ JCrM 1sK

Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1 ù immediate!
Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

Contextual equivalence [Morris, Milner,. . .]

Γ $ M »ctx M 1 : σ
w.r.t. a semantics J´K

ðñ
JCrMsK “ JCrM 1sK

Cr´s any closed ground context

swapping M and M 1

doesn’t affect
observable behaviour

How does semantic equality relate to »ctx?

Adequacy: JMK “ JM 1K ùñ M »ctx M 1 ù immediate!
Full abstraction: M »ctx M 1 ùñ JMK “ JM 1K

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3 / 59

The quest for full abstraction

late 1960s roots of the definition
1975 Milner introduces full abstraction
1977 Plotkin: domains model for PCF is not fully abstract

80s & 90s attempts to classify “sequentiality” + lots more
late 90s games models,

O’Hearn & Riecke’s domains + logical relations model
21st C Marz, Riecke, Ehrhard et al., Matache et al., . . .

ù mainly focussed on languages with recursion

4 / 59

This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates

5 / 59

This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates

5 / 59

This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

determines an interpretation
sJΓ $ M : σK : sJΓK Ñ TsJσK

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates

5 / 59

This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

determines an interpretation
sJΓ $ M : σK : sJΓK Ñ TsJσK

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates

5 / 59

This work: cranking the handle

signature S
= chosen base types,

effect operations,
& primitives

`

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

determines an interpretation
sJΓ $ M : σK : sJΓK Ñ TsJσK

ó

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

inspired by O’Hearn & Riecke’s model

concrete over M:
maps in OHRpMq are
maps in M satisfying predicates

5 / 59

signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of computational λ-calculus + constants + sums

e.g. small subcategory Setκ of Set
+ any monad
+ any interpretation

with a constant b for every b P sJβK

6 / 59

signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of read-only state

e.g. subcategory Setκ of Set
+ reader monad R
+ JnatK “ N,

JboolK “ t0, 1u, . . .
e.g. base types nat, bool
+ true, false and n for n P N
+ read, . . .

6 / 59

signature S
= chosen base types,

effect operations,
& primitives

`

ó

semantic model pM,T , sq
= CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

fully abstract model OHRpMq

of an idealised probabilistic programming language

e.g. small sub-CCC of Qbs
+ probability monad
+ JrealK “ pR,ΣRq

e.g. base type real
+ sample, score and normalise
+ f for each measurable f

6 / 59

The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59

The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59

The big picture

Obstruction to pM,T , sq being fully abstract:
D morphisms in M expressing behaviour the syntax cannot

[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

8 / 59

Up next: a recipe that doesn’t quite work
. . . but is the template for our construction

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphismadd concreteness

refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

OHR construction =
same pattern, but with
every possible relation

8 / 59

A motivating example: read-only state [Matache & Staton]

Idea [omitting sums for now]

1. A global, one-bit memory cell
2. You can read, but not write

9 / 59

The signature

10 / 59

t y p e s τ : := bool | τ ˚ τ | 1 | τ Ñ τ

te rms M : :=
STLC

x # v a r i a b l e s
| (M,M) # produc t t yp e s
| πi(M)
| pq
| λ x . M # f u n c t i o n t yp e s
| M M

p r i m i t i v e s
| tt # boo l ean v a l u e s
| ff
| ^ # boo l ean o p e r a t i o n s
| _
|
| if M then M else M # branch i ng

e f f e c t o p e r a t i o n s
| read : 1 Ñ boo l # read from the c e l l

11 / 59

t y p e s τ : := bool | τ ˚ τ | 1 | τ Ñ τ

te rms M : :=
STLC

x # v a r i a b l e s
| (M,M) # produc t t yp e s
| πi(M)
| pq
| λ x . M # f u n c t i o n t yp e s
| M M

p r i m i t i v e s
| tt # boo l ean v a l u e s
| ff
| ^ # boo l ean o p e r a t i o n s
| _
|
| if M then M else M # branch i ng

e f f e c t o p e r a t i o n s
| read : 1 Ñ boo l # read from the c e l l

11 / 59

t y p e s τ : := bool | τ ˚ τ | 1 | τ Ñ τ

te rms M : :=
STLC

x # v a r i a b l e s
| (M,M) # produc t t yp e s
| πi(M)
| pq
| λ x . M # f u n c t i o n t yp e s
| M M

p r i m i t i v e s
| tt # boo l ean v a l u e s
| ff
| ^ # boo l ean o p e r a t i o n s
| _
|
| if M then M else M # branch i ng

e f f e c t o p e r a t i o n s
| read : 1 Ñ boo l # read from the c e l l

11 / 59

t y p e s τ : := bool | τ ˚ τ | 1 | τ Ñ τ

te rms M : :=
STLC

x # v a r i a b l e s
| (M,M) # produc t t yp e s
| πi(M)
| pq
| λ x . M # f u n c t i o n t yp e s
| M M

p r i m i t i v e s
| tt # boo l ean v a l u e s
| ff
| ^ # boo l ean o p e r a t i o n s
| _
|
| if M then M else M # branch i ng

e f f e c t o p e r a t i o n s
| read : 1 Ñ boo l # read from the c e l l

11 / 59

The semantic model

12 / 59

A model pFin,R, sq

Idea:
1. Interpret programs as functions;
2. Parametrise by what’s in the cell.

13 / 59

A model pFin,R, sq

Idea:
1. Interpret programs as functions;
2. Parametrise by what’s in the cell.

‚ Use the category Fin of finite sets;

‚ Use the natural interpretation:
sJboolK :“ 2 :“ t0, 1u

sJ˛ $ tt : boolK “ const1
sJ˛ $ ff : boolK “ const0

sJΓ $ M : boolK “ λγ . λi .
`

sJMKpγqpiq
˘

sJΓ $ readpq : boolK “ λγ . λi . i

‚ Use the reader monad: RX :“ p2ñ X q:

sJ˛ $ M : τK P RpsJτKq

sJΓ $ M : τK : sJΓK Ñ RsJτK
sJMKpiq “ value M returns

when i in the cell

13 / 59

A model pFin,R, sq

Idea:
1. Interpret programs as functions;
2. Parametrise by what’s in the cell.

‚ Use the category Fin of finite sets;
‚ Use the natural interpretation:

sJboolK :“ 2 :“ t0, 1u
sJ˛ $ tt : boolK “ const1
sJ˛ $ ff : boolK “ const0

sJΓ $ M : boolK “ λγ . λi .
`

sJMKpγqpiq
˘

sJΓ $ readpq : boolK “ λγ . λi . i

‚ Use the reader monad: RX :“ p2ñ X q:

sJ˛ $ M : τK P RpsJτKq

sJΓ $ M : τK : sJΓK Ñ RsJτK
sJMKpiq “ value M returns

when i in the cell

13 / 59

A model pFin,R, sq

Idea:
1. Interpret programs as functions;
2. Parametrise by what’s in the cell.

‚ Use the category Fin of finite sets;
‚ Use the natural interpretation:

sJboolK :“ 2 :“ t0, 1u
sJ˛ $ tt : boolK “ const1
sJ˛ $ ff : boolK “ const0

sJΓ $ M : boolK “ λγ . λi .
`

sJMKpγqpiq
˘

sJΓ $ readpq : boolK “ λγ . λi . i

‚ Use the reader monad: RX :“ p2ñ X q:

sJ˛ $ M : τK P RpsJτKq

sJΓ $ M : τK : sJΓK Ñ RsJτK
sJMKpiq “ value M returns

when i in the cell

13 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

Intuitively, M »ctx M 1. But. . .

14 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

M, M’ : ((1 Ñ bool) Ñ bool) Ñ bool

app l y f : (1 Ñ boo l) Ñ boo l to λ x . t t
then to λ x . f f
then take the d i s j u n c t i o n
M := λ f . (f (λ x . tt)) _ (f (λ x . ff))

Intuitively, M »ctx M 1. But. . .

14 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

M, M’ : ((1 Ñ bool) Ñ bool) Ñ bool

app l y f : (1 Ñ boo l) Ñ boo l to λ x . t t
then to λ x . f f
then take the d i s j u n c t i o n
M := λ f . (f (λ x . tt)) _ (f (λ x . ff))

app l y f to r ead then to
the f u n c t i o n nega t i n g the read v a l u e
then take the d i s j u n c t i o n
M’ := λ f . (f read) _ (f (λ x . (read x)))

Intuitively, M »ctx M 1. But. . .

14 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

M, M’ : ((1 Ñ bool) Ñ bool) Ñ bool

app l y f : (1 Ñ boo l) Ñ boo l to λ x . t t
then to λ x . f f
then take the d i s j u n c t i o n
M := λ f . (f (λ x . tt)) _ (f (λ x . ff))

app l y f to r ead then to
the f u n c t i o n nega t i n g the read v a l u e
then take the d i s j u n c t i o n
M’ := λ f . (f read) _ (f (λ x . (read x)))

Intuitively, M »ctx M 1. But. . .

14 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

Have:
sJMK, sJM 1K P R

``

p1ñ R2q ñ R2
˘

ñ R2
˘

15 / 59

pFin,R, sq is not fully abstract [Matache & Staton]

Have:
sJMK, sJM 1K P R

``

p1ñ R2q ñ R2
˘

ñ R2
˘

Take κ : p1ñ R2q Ñ R2:

κpgq :“

#

const1 if gp˚q “ const1
const0 else

Then

sJMKpiqpκqpjq “ 1 ‰ 0 “ sJM 1Kpiqpκqpjq

15 / 59

What goes wrong?

The model describes behaviours ΛROS cannot express

κ is a counterexample to contextual equivalence

16 / 59

What goes wrong?

The model describes behaviours ΛROS cannot express

κpgq :“

#

const1 if gp˚q “ const1
const0 else

κ knows how g behaves
both when the cell contains 0
and when it contains 1

State is read-only
— programs can’t do this!

κ is a counterexample to contextual equivalence

16 / 59

What goes wrong?

The model describes behaviours ΛROS cannot express

κpgq :“

#

const1 if gp˚q “ const1
const0 else

κ knows how g behaves
both when the cell contains 0
and when it contains 1

State is read-only
— programs can’t do this!

κ is a counterexample to contextual equivalence

16 / 59

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

17 / 59

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

17 / 59

A refined model pL, R̂, tq

Idea:
- pair each set with relations R0 and R1
- restrict to functions preserving these relations

preserving Ri ù respecting behaviour when cell contains i

The cartesian closed category L

objects: triples pX ,R0,R1q
X P Fin
Ri Ď X 2

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

px , x 1q P Ri ùñ pf x , f x 1q P Si
for i “ 1, 2

18 / 59

A refined model pL, R̂, tq

Idea:
- pair each set with relations R0 and R1
- restrict to functions preserving these relations

preserving Ri ù respecting behaviour when cell contains i

The cartesian closed category L

objects: triples pX ,R0,R1q
X P Fin
Ri Ď X 2

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

px , x 1q P Ri ùñ pf x , f x 1q P Si
for i “ 1, 2

18 / 59

A refined model pL, R̂, tq

Idea:
- pair each set with relations R0 and R1
- restrict to functions preserving these relations

preserving Ri ù respecting behaviour when cell contains i

The cartesian closed category L

objects: triples pX ,R0,R1q
X P Fin
Ri Ď X 2

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

px , x 1q P Ri ùñ pf x , f x 1q P Si
for i “ 1, 2

18 / 59

The cartesian closed category L

objects: triples pX ,R0,R1q

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

The monad R̂ ù defined by JJ-lifting

R̂pY ,S0,S1q “
`

2ñ Y , R̂pS0q, R̂pS1q
˘

ph, h1q P R̂pSi q
ðñ ph i , h1 iq P Si

The interpretation t

tpboolq “
`

2, tp0, 0q, p1, 1qu, tp0, 0q, p1, 1qu
˘

tpreadq “ sJreadK ù already preserves the relations
. . .

19 / 59

The cartesian closed category L

objects: triples pX ,R0,R1q

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

The monad R̂ ù defined by JJ-lifting

R̂pY , S0,S1q “
`

2ñ Y , R̂pS0q, R̂pS1q
˘

ph, h1q P R̂pSi q
ðñ ph i , h1 iq P Si

The interpretation t

tpboolq “
`

2, tp0, 0q, p1, 1qu, tp0, 0q, p1, 1qu
˘

tpreadq “ sJreadK ù already preserves the relations
. . .

19 / 59

The cartesian closed category L

objects: triples pX ,R0,R1q

maps pX ,R0,R1q Ñ pY ,S0,S1q:
maps f : X Ñ Y preserving the relations

The monad R̂ ù defined by JJ-lifting

R̂pY , S0,S1q “
`

2ñ Y , R̂pS0q, R̂pS1q
˘

ph, h1q P R̂pSi q
ðñ ph i , h1 iq P Si

The interpretation t

tpboolq “
`

2, tp0, 0q, p1, 1qu, tp0, 0q, p1, 1qu
˘

tpreadq “ sJreadK ù already preserves the relations
. . .

19 / 59

One step closer to full abstraction?

κ is not a morphism in L!

ó

we’ve removed a
counterexample

to contextual equivalence

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful

20 / 59

One step closer to full abstraction?

κ is not a morphism in L!

ó

we’ve removed a
counterexample

to contextual equivalence

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful

20 / 59

One step closer to full abstraction?

κ is not a morphism in L!

ó

we’ve removed a
counterexample

to contextual equivalence

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful

20 / 59

One step closer to full abstraction?

All the structure is preserved:

. . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful

ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract

2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K

3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough

ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

One step closer to full abstraction?

All the structure is preserved . . . so the semantics is preserved:

pL, R̂, tq κ removed

pFin,R, sq κ lives here

U forgetful ùñ UptJKKq “ sJKK for all K

This can never be enough ù relations are never sufficient

1. Suppose pL, R̂, tq is fully abstract
2. . . . so tJMK “ tJM 1K
3. Then sJMK “ UptJMKq “ UptJM 1Kq “ sJM 1K ※

21 / 59

Diagnosing the problem

κ P sJp1Ñ boolq Ñ boolK “ UptJp1Ñ boolq Ñ boolKq

ó

tJMK, tJM 1K : tJp1Ñ boolq Ñ boolK Ñ R̂ptJboolKq
can still disagree on κ!

κ is not in the hom-sets in L but κ is in the function spaces in L

22 / 59

Diagnosing the problem

κ P sJp1Ñ boolq Ñ boolK “ UptJp1Ñ boolq Ñ boolKq

ó

tJMK, tJM 1K : tJp1Ñ boolq Ñ boolK Ñ R̂ptJboolKq
can still disagree on κ!

κ is not in the hom-sets in L but κ is in the function spaces in L

22 / 59

Diagnosing the problem

κ P sJp1Ñ boolq Ñ boolK “ UptJp1Ñ boolq Ñ boolKq

ó

tJMK, tJM 1K : tJp1Ñ boolq Ñ boolK Ñ R̂ptJboolKq
can still disagree on κ!

κ is not in the hom-sets in L

but κ is in the function spaces in L

22 / 59

Diagnosing the problem

κ P sJp1Ñ boolq Ñ boolK “ UptJp1Ñ boolq Ñ boolKq

ó

tJMK, tJM 1K : tJp1Ñ boolq Ñ boolK Ñ R̂ptJboolKq
can still disagree on κ!

κ is not in the hom-sets in L but κ is in the function spaces in L

22 / 59

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

23 / 59

a simple model of
read-only state

not fully abstract!
counterexample κ

add relations
refined model
without κ as
a morphism

not fully abstract!
counterexample κ
in function spaces

[not well-pointed]

add concreteness
refined model
without κ as a morphism
without κ in function spaces

[recover well-pointedness]

not fully abstract!
other counterexamples

ù relations not strong enough

23 / 59

Removing κ from the function space

Observation

ù κ appears as a shadow!

We have
κ P UptJp1Ñ boolq Ñ boolKq

but there is no global element in L

γ : 1Ñ tJp1Ñ boolq Ñ boolK

such that γp˚q “ κ.

24 / 59

Removing κ from the function space

Observation

ù κ appears as a shadow!

We have
κ P UptJp1Ñ boolq Ñ boolKq

but there is no global element in L

γ : 1Ñ tJp1Ñ boolq Ñ boolK

such that γp˚q “ κ.

ñ L is not well-pointed
[f “ g iff f ˝ γ “ g ˝ γ

for all global elements γ]

24 / 59

Removing κ from the function space

Observation ù κ appears as a shadow!

We have
κ P UptJp1Ñ boolq Ñ boolKq

but there is no global element in L

γ : 1Ñ tJp1Ñ boolq Ñ boolK

such that γp˚q “ κ.

ñ L is not well-pointed
[f “ g iff f ˝ γ “ g ˝ γ

for all global elements γ]

24 / 59

Solution: restrict to things named by a global element

C = full subcategory of L of concrete objects

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

Explicitly: for every x P X , the pair px , xq P R0 and px , xq P R1.

C = full subcategory of L of concrete objects

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

C L R̂j

K

%

H

%

restrict to subset
of concrete elements

union relations
with diagonal

ñ C a CCC
with monad HR̂j

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

C L R̂j

K

%

H

%

restrict to subset
of concrete elements

union relations
with diagonal

ñ C a CCC
with monad HR̂j

25 / 59

Solution: restrict to things named by a global element

1. for pX ,R0,R1q P L, x P X is concrete if

xxy : ˚ ÞÑ x : 1Ñ pX ,R0,R1q

is a map in L;

2. pX ,R0,R1q P L is concrete if every x P X is concrete.

C = full subcategory of L of concrete objects

C L R̂j

K

%

H

%

restrict to subset
of concrete elements

union relations
with diagonal

ñ C a CCC
with monad HR̂j

25 / 59

C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

ù concreteness removes κ from the function space

26 / 59

C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

ù concreteness removes κ from the function space

26 / 59

C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

f P UH
`

X ñL Y
˘

iff f P U
`

X ñL Y
˘

and D a global element in L corresponding to f

ù concreteness removes κ from the function space

26 / 59

C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

U
`

X ñC Y
˘

“ UH
`

X ñL Y
˘

– LpX ,Y q

ù concreteness removes κ from the function space

26 / 59

C = full subcategory of L of concrete objects
objects: pX ,R0,R1q such that x P X ùñ px , xq P Ri

maps: set-maps preserving the relations

C L R̂j

K

H

restrict to subset
of concrete elements

ñ C a CCC
with monad HR̂j

Exponentials internalise preserving relations

pX ñC Y q “ H
`

X ñL Y
˘

U
`

X ñC Y
˘

“ UH
`

X ñL Y
˘

– LpX ,Y q

ù concreteness removes κ from the function space
26 / 59

Success!

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

Success!

Our new semantic model:

1. CCC C

2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

Success!

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

Success!

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

Success!

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

Success?

Our new semantic model:

1. CCC C
2. monad HR̂j

3. interpretation t by restriction

Aim: remove bad morphism κ

1. from hom-sets ù [logical] relations
2. from function spaces ù concreteness

But pC,HR̂j , tq is not fully abstract ù need stronger relations!

27 / 59

We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K

28 / 59

We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K

28 / 59

We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K

28 / 59

We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K

28 / 59

We know how to remove a single bad morphism. . .

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations ùñ f is not a bad morphism

A sufficient condition:
f “ sJKK for some K ù f is definable

28 / 59

The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

29 / 59

The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

29 / 59

The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

29 / 59

The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

29 / 59

The route from here

1. the model we’ve just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

29 / 59

Constructing pC,HR̂j , tq: a recipe

30 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H
%

%

restrict to subset
of concrete elements

union relations
with diagonal

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

Fin

R

L

R̂

U
preserves
everything

C j

K

H

%
%

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod
cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

NB: two relations ù two categories on RHS

31 / 59

A recipe for removing bad morphisms κ

Fin

R

L

R̂

C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod

X ÞÑ pX ,X q

x

if f definable
here

then f definable
here

32 / 59

A recipe for removing bad morphisms κ

Fin

R

L

R̂

C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod

X ÞÑ pX ,X q

x
if f definable

here

then f definable
here

32 / 59

A recipe for removing bad morphisms κ

Fin

R

L

R̂

C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod

X ÞÑ pX ,X q

x
if f definable

here

then f definable
here

32 / 59

A recipe for removing bad morphisms κ

Fin

R

L

R̂

C j

K

H

%
%

U
preserves
everything

HR̂j

SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

codˆ cod

X ÞÑ pX ,X q

x

if f definable
here

then f definable
here

Every definable f : sJΓK Ñ T psJσKq lifts to f : tJΓK Ñ T̂ ptJσKq

How can we change this construction so only definable maps lift?

32 / 59

KM,F , abstractly

Idea:
replace relations on sets . . .

with families of relations indexed by contexts

Fin

R

L SubpFinq ˆ SubpFinq

Finˆ Fin

pX ,Aq such that A Ď X ;
maps preserve the predicate

cod : pA Ď X q ÞÑ X

X ÞÑ pX ,X q

x

33 / 59

KM,F , abstractly

Idea:
replace relations on sets . . .
with families of relations indexed by contexts

KM,F

M yCon
objects: contexts
maps: context renamings

SubpyConq

U cod

λX .MpF p´q ,X q

x

33 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation

34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation

34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation

34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation

34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation
34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM
“semantic

interpretation”

category of contexts
and renamings

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

f : W ÑW 1

preserves the predicate
h P RpΓq ñ pf ˝ hq P R 1pΓq

over Set with |FΓ| “ n ù R an n-ary relation
34 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

Fact: KM,F is a CCC
Notation: pW ,Rq ñ pX , Sq :“ pW ñ X ,R Ą Sq

35 / 59

The category KM,F of Kripke relations [Jung & Tiuryn, Alimohamed]

data: - CCC M
- F : Conop

ÑM

predicate = Kripke relation
object PM

tRpΓq ĎMpFΓ,W quΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

Fact: KM,F is a CCC
Notation: pW ,Rq ñ pX , Sq :“ pW ñ X ,R Ą Sq

pf1, . . . , fnq P pR Ą SqpΓq iff, for any ρ : Γ Ñ ∆,

px1, . . . , xmq P Rp∆q ĎW FΓ ñ pfρp1qx1, . . . , fρpmqxmq P Sp∆q Ď X F∆

35 / 59

Kripke relations for STLC definability [Jung & Tiuryn, Alimohamed, . . .]

36 / 59

Kripke relations for STLC definability [Jung & Tiuryn, Alimohamed, . . .]

DEFσpΓq :“

sJΓ $ M : σK
ˇ

ˇM is derivable
(

36 / 59

Kripke relations for STLC definability [Jung & Tiuryn, Alimohamed, . . .]

DEFσpΓq :“

sJΓ $ M : σK
ˇ

ˇM is derivable
(

data: - CCC M
- F : Conop

ÑM

definability predicate
sJσK PM

tDEFσpΓq ĎMpsJΓK, sJσKquΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

36 / 59

Kripke relations for STLC definability [Jung & Tiuryn, Alimohamed, . . .]

DEFσpΓq :“

sJΓ $ M : σK
ˇ

ˇM is derivable
(

data: - CCC M
- F : Conop

ÑM

definability predicate
sJσK PM

tDEFσpΓq ĎMpsJΓK, sJσKquΓPCon
compatible with renaming

objects: pW ,Rq

maps: pW ,Rq
f
ÝÑ pW 1,R 1q

36 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq

ŝ

s

U cod

λX .MpsJ´K ,X q

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

ŝpβq :“ psJβK,DEFβq

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

ŝpβq :“ psJβK,DEFβq

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.
ù

i.e. pDEFσ Ą DEFτ q “ DEFσ –ą τ etc.

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.

f : sJΓK Ñ sJσK is definable ðñ f : ŝJΓK Ñ ŝJσK

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.

f : sJΓK Ñ sJσK is definable ðñ f : ŝJΓK Ñ ŝJσK

ŝJΓK ŝJσKf

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.

f : sJΓK Ñ sJσK is definable ðñ f : ŝJΓK Ñ ŝJσK

psJΓK,DEFΓq psJσK,DEFσq
f

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.

f : sJΓK Ñ sJσK is definable ðñ f : ŝJΓK Ñ ŝJσK

psJΓK,DEFΓq psJσK,DEFσq

idJΓK
is definable

f ˝ idJΓK P DEFσpΓq

f

37 / 59

Characterising STLC-definable maps [Jung & Tiuryn, Alimohamed]

strictly
preserves CCC

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

ŝJσK “ psJσK,DEFσq for every STLC-type σ.

the definable maps are exactly those
that lift to pKM,sJ´K, ŝq

37 / 59

What about the monad?

38 / 59

ŝpβq :“ psJβK,DEFβq

strictly
preserves CCC,
semantics

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F

39 / 59

ŝpβq :“ psJβK,DEFβq

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F

39 / 59

ŝpβq :“ pTsJβK,DEFβq

strictly
preserves CCC,
semantics
and monad ??

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F

39 / 59

ŝpβq :“ pTsJβK,DEFβq

strictly
preserves CCC,
semantics
and monad ??

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F

39 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

Restricting to values

for pTX ,Rq P KM,F

RvalpΓq :“

f
ˇ

ˇ ηX ˝ f P RpΓq
(

so pX ,Rvalq P KM,F

39 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

40 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

choosing T̂ by JJ-lifting

40 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

choosing T̂ by JJ-lifting . . . for every type σ:

ŝJσK “ psJσK,DEFval
σ q and T̂ ŝJσK “ pTsJσK,DEFσq

40 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

choosing T̂ by JJ-lifting . . . for every type σ:

ŝJσK “ psJσK,DEFval
σ q and T̂ ŝJσK “ pTsJσK,DEFσq

f : sJΓK Ñ sJσK is definable ðñ f : ŝJΓK Ñ ŝJσK

40 / 59

ŝpβq :“ psJβK,DEFval
β q

strictly
preserves CCC,
semantics
and monad

Base

KM,sJ´K

M yCon

SubpyConq
ŝ

s

U cod

λX .MpsJ´K ,X q

T

T̂

choosing T̂ by JJ-lifting . . . for every type σ:

ŝJσK “ psJσK,DEFval
σ q and T̂ ŝJσK “ pTsJσK,DEFσq

the definable maps are exactly those
that lift to pKM,sJ´K, T̂ , ŝq

40 / 59

The route so far

X the model we’ve just seen, abstractly

X restricting to definable morphisms

3. the abstract OHR construction ù follows pattern just seen

4. getting full abstraction

41 / 59

The abstract OHR construction

42 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

required by
axiom on M

always
exists

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ
1. Use relations ù stops them being morphisms
2. Use concreteness ù cuts them out function spaces

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

relations
on M x

F

fibration for
logical relations

T̂

JJ-lifting
of T

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

OHR
model

NB: I-many categories on RHS ù I-many relations

43 / 59

A recipe for removing bad morphisms κ

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

OHR
model O

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

NB: I-many categories on RHS ù I-many relations

Key trick: choose I, F , Bi and interpretation ŝ so that Di0 P I with

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

44 / 59

A recipe for removing bad morphisms κ

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

OHR
model O

concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

NB: I-many categories on RHS ù I-many relations

Key trick: choose I, F , Bi and interpretation ŝ so that Di0 P I with

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

44 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .

so f preserves DEF. . .
so f is definable

ù so every map is definable!

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .

so f preserves DEF. . .
so f is definable

ù so every map is definable!

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .

so f preserves DEF. . .
so f is definable

ù so every map is definable!

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .

so f is definable

ù so every map is definable!

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

ù so every map is definable!

45 / 59

M

T

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Key trick: choose I, F , Bi and ŝ so that Di0 P I with.

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable ù so every map is definable!

45 / 59

Fact:

1. O is always well-pointed;
2. any well-pointed model with every morphism definable

is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!

46 / 59

Fact:

1. O is always well-pointed;

2. any well-pointed model with every morphism definable
is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!

46 / 59

Fact:

1. O is always well-pointed;
2. any well-pointed model with every morphism definable

is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!

46 / 59

Fact:

1. O is always well-pointed;
2. any well-pointed model with every morphism definable

is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!

46 / 59

Fact:

1. O is always well-pointed;
2. any well-pointed model with every morphism definable

is fully abstract.

ñ it remains to instantiate the construction

Strategy: see what we need as we go along!

46 / 59

Getting full abstraction

47 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

MT

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

48 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

MT

ś

iPI

ˆ

predicates
on Bi

˙

ś

iPI Bi

fibration for
logical relations

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

48 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

F

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

48 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

48 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve DEF

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve DEF

construct the
DEF predicate

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve DEF

construct the
DEF predicate

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs

ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

49 / 59

Key trick: Choose data and an interpretation ŝ so that Di0 P I such
that

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

then:

f : ŝJΓK Ñ WŝJσK preserves every relation, . . .
so f preserves DEF. . .
so f is definable

Chickens and eggs ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

49 / 59

Chickens and eggs ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

Need to quantify over relations on O before constructing O

50 / 59

Chickens and eggs ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

Need to quantify over relations on O before constructing O

50 / 59

Chickens and eggs ù c.f. impredicativity

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

Need to quantify over relations on O before constructing O

Solution: relations on O are relations on M!

50 / 59

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM

so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q

ĎMpUF pΓq,X q

51 / 59

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q ĎMpUF pΓq,X q

51 / 59

M

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Have U : OÑM so for any X P O and R on X we get

RpΓq Ď OpF pΓq,X q ĎMpUF pΓq,X q

ù relations over O induce relations over M!

51 / 59

define a model pO,W, ŝq
in which maps preserve
every possible relation

construct the
DEF predicate

identify DEF as one
of the preserved predicates

52 / 59

define a model pO,W, ŝq
in which maps preserve
every possible relation

over pM,T , sq

construct the
DEF predicate

identify DEF as one
of the preserved predicates

52 / 59

Aim:
define a model pO,W, ŝq in which maps preserve
every possible relation over pM,T , sq

53 / 59

Aim:
define a model pO,W, ŝq in which maps preserve
every possible relation over pM,T , sq

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

53 / 59

Aim:
define a model pO,W, ŝq in which maps preserve
every possible relation over pM,T , sq

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

Then: will get Di0 P I

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

53 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

54 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

MT

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x

X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

54 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

MT

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x
X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

ù to define our semantic interpretation in O

54 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

MT

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x
X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM

3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

ù to define our semantic interpretation in O

54 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

MT

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x
X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

ù to define our semantic interpretation in O

54 / 59

Tactic:
1. use I to quantify over all possible relations

so that DEF must appear
2. define interpretation to look it up

MT

ś

iPI SubpxAi q

ś

iPI
xAi

ś

i cod

K
relations
on M

x
X ÞÑ xMpFi p´q,Xqyi

fibration for
logical relations

T̂

objects:
`

X , tX i

ˇ

ˇ i P Iu
˘

maps: M-maps preserving
every relation

O
concrete
relations
on M

j

K

H

%
%

W :“ HT̂ j

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

ù to define our semantic interpretation in O
54 / 59

Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

I Q ?

55 / 59

Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

1. set Sites Q Conop

2. for every A P Sites,
FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “ tmonad liftings to KM,F u

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “ tinterpretations in ConcpKM,Fi

qu

I Q pA P Sites, . . . q
55 / 59

Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

1. set Sites Q Conop

2. for every A P Sites,
FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “ tmonad liftings to KM,F u

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “ tinterpretations in ConcpKM,Fi

qu

I Q pA P Sites,F P FuncpAq, . . . q
55 / 59

Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

1. set Sites Q Conop

2. for every A P Sites,
FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “ tmonad liftings to KM,F u

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “ tinterpretations in ConcpKM,Fi

qu

I Q
´

A P Sites,F P FunpAq, T̂ P LiftpA,F q, . . .
¯

55 / 59

Bake all the data into I

Need from every i P I:
1. category Ai

2. functor Fi : Conop ÑM
3. a lifting T̂i of T to KM,Fi

4. an interpretation r in ConcpKM,Fi
q ãÑ KM,Fi

1. set Sites Q Conop

2. for every A P Sites,
FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “ tmonad liftings to KM,F u

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “ tinterpretations in ConcpKM,Fi

qu

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

55 / 59

Defining the semantic interpretation: just look it up in I!

56 / 59

Defining the semantic interpretation: just look it up in I!

1. set Sites Q Conop

2. for every A P Sites,
FuncpAq “ rA,Ms,

3. for every F P FuncpAq “ rA,Ms,

LiftpA,F q “

monad liftings to KM,F

(

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “

interpretations in ConcpKM,Fi
q
(

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

56 / 59

Defining the semantic interpretation: just look it up in I!

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “

interpretations in ConcpKM,Fi
q
(

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

56 / 59

Defining the semantic interpretation: just look it up in I!

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “

interpretations in ConcpKM,Fi
q
(

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

carriers: take the interpretation from M ù ŝJβK :“ sJβK

relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

56 / 59

Defining the semantic interpretation: just look it up in I!

4. for T̂ P LiftpA,F q,
InterppA,F , T̂ q “

interpretations in ConcpKM,Fi
q
(

I Q
´

A P Sites,F P FuncpAq, T̂ P LiftpA,F q, r P InterppA,F , T̂ q
¯

carriers: take the interpretation from M ù ŝJβK :“ sJβK

relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

56 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

ĎM
`

UŝJΓK,UWŝJσK
˘

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

ĎM
`

UŝJΓK,UWŝJσK
˘

Picking the index i0

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

ĎM
`

UŝJΓK,UWŝJσK
˘

Picking the index i0

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting

4. rpβq :“
`

sJβK,DEFval
β

˘

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

ĎM
`

UŝJΓK,UWŝJσK
˘

Picking the index i0

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting

4. rpβq :“
`

sJβK,DEFval
β

˘

57 / 59

Picking i0 ù look up DEF

Want: ŝJσKi0 “ DEFval
σ

Note: DEFval
σ pΓq Ď O

`

ŝJΓK,WŝJσK
˘

ĎM
`

UŝJΓK,UWŝJσK
˘

Picking the index i0

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“

`

sJβK,DEFval
β

˘

57 / 59

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

58 / 59

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

58 / 59

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

Hence every f : ŝJΓK Ñ WŝJσK is definable

58 / 59

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

Hence every f : ŝJΓK Ñ WŝJσK is definable

Hence pO,W, ŝq is fully complete and well-pointed
58 / 59

1. A :“ Conop

2. F :“ pConop ŝJ´K
ÝÝÝÑ O U

ÝÑMq

3. T̂ chosen by JJ-lifting
4. rpβq :“ psJβK,DEFval

β q

carriers: take the interpretation from M ù ŝJβK :“ sJβK
relations: use what the index gives:

ŝJβKpA,F , T̂ , rq :“
`

relation part of rpβq
˘

Key lemma

For i0 as above, and all σ P Type:

ŝJσKi0 “ DEFval
σ and WŝJσKi0 “ DEFσ

Hence every f : ŝJΓK Ñ WŝJσK is definable

Hence pO,W, ŝq is fully abstract
58 / 59

Summary and future work

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
ñ full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

3. Maps in O’Hearn–Riecke model O preserve
enough relations

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
ñ full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

3. Maps in O’Hearn–Riecke model O preserve
enough relations

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
ñ full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

3. Maps in O’Hearn–Riecke model O preserve
enough relations

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
ñ full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

3. Maps in O’Hearn–Riecke model O preserve
enough relations

Still to do

1. Weakening assumptions: well-pointedness, hull functor H, . . .

2. Checking examples: esp. presheaf models (names, . . .)

3. Universal property?

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
ñ full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

3. Maps in O’Hearn–Riecke model O preserve
enough relations

Still to do

1. Weakening assumptions: well-pointedness, hull functor H, . . .

2. Checking examples: esp. presheaf models (names, . . .)

3. Universal property?

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 / 59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

	Constructing (C, Hj, [2]): a recipe
	The abstract OHR construction
	Getting full abstraction

