Constructing fully-abstract models
of effectful A-calculi

Ohad Kammar' and Shin-ya Katsumata* and Philip Savillet

fSchool of Informatics
University of Edinburgh

*National Institute of Informatics
Tokyo

fDepartment of Computer Science

University of Oxford

preprint at cs.ox.ac.uk/people/philip.saville/home.html

1/59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Slogan: models* go in, fully abstract models come out

2/59

Contextual equivalence [Morris, Milner,. . .]

CIM] |V < C[M] | V

C[—] any closed ground context

FrM—M~yx M : 0 —

3/59

Contextual equivalence [Morris, Milner,. . .]

CIM |V — C[M] | V

C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

3/59

Contextual equivalence [Morris, Milner,. . .]

T Ma~uyx M 2 o — [C[M]] = [C[M']]

w.r.t. a semantics [—] C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

3/59

Contextual equivalence [Morris, Milner,. ..]

MEMa~qx Mo [cIM]] = [c[M]]

w.r.t. a semantics [—] C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

Reasoning about ~t, is hard! Want semantic techniques round this

3/59

Contextual equivalence [Morris, Milner,. . .]

T Ma~uyx M 2 o — [C[M]] = [C[M']]

w.r.t. a semantics [—] C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

How does semantic equality relate to ~,?

Adequacy: [M] = [M'] = M ~yx M’
Full abstraction: M ~.x, M = [M] = [M']

3/59

Contextual equivalence [Morris, Milner,. . .]

T Ma~uyx M 2 o — [C[M]] = [C[M']]

w.r.t. a semantics [—] C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

How does semantic equality relate to ~,?

Adequacy: [M] = [M'] = M ~qx M’ > immediate!
Full abstraction: M ~.x, M = [M] = [M']

3/59

Contextual equivalence [Morris, Milner,. . .]

T Ma~uyx M 2 o — [C[M]] = [C[M']]

w.r.t. a semantics [—] C[—] any closed ground context

swapping M and M’
doesn't affect
observable behaviour

How does semantic equality relate to ~,?

Adequacy: [M] = [M'] = M ~qx M’ > immediate!
Full abstraction: M ~.x, M = [M] = [M']

In an adequate, fully abstract model
semantic equality characterises contextual equivalence

3/59

The quest for full abstraction

late 1960s
1975
1977

80s & 90s
late 90s

21st C

roots of the definition

Milner introduces full abstraction

Plotkin: domains model for PCF is not fully abstract
attempts to classify “sequentiality” + lots more
games models,

O'Hearn & Riecke's domains + logical relations model
Marz, Riecke, Ehrhard et al., Matache et al,, ...

v~ mainly focussed on languages with recursion

4/59

This work: cranking the handle

5/59

This work: cranking the handle

signature S

= chosen base types,
effect operations,
& primitives

5/59

This work: cranking the

signature S

= chosen base types,
effect operations,
& primitives

handle

semantic model (M, T,s)

= CCC with coproducts M
+ strong monad T
+ interpretation s

+ conditions on M, s

:

determines an interpretation
s[FT = M: o] :s[l] — Ts[o]

5/59

This work: cranking the

signature S

= chosen base types,
effect operations,
& primitives

handle

semantic model (M, T,s)

= CCC with coproducts M
+ strong monad T
+ interpretation s

+ conditions on M, s

¢

determines an interpretation
s[FT=M:o]:s[l] — Ts[o]

fully abstract model OHR(M)
of computational A-calculus + constants 4+ sums

inspired by O'Hearn & Riecke's model

5/59

This work: cranking the handle

semantic model (M, T,s)

= CCC with coproducts M
+ strong monad T
+ interpretation s

+ conditions on M, s

¢

\U/ determines an interpretation
s[FT=M:o]:s[l] — Ts[o]

signature S

= chosen base types, +
effect operations,
& primitives

fully abstract model OHR(M)
of computational A-calculus + constants 4+ sums

5/ inspired by O'Hearn & Riecke's model

C
concrete over M:
maps in OHR(M) are
maps in M satisfying predicates

5/59

e.g. small subcategory Set,, of Set
+ any monad
+ any interpretation
with a constant b for every b € s[3]

)
!

signature S semantic model (M, T,s)
— lnesan s s, + = CCC with coproducts M
. + strong monad T
effect operations, .)
& primitives + interpretation s
+ conditions on M, s

I

fully abstract model OHR(M)
of computational A-calculus + constants + sums

6/59

e.g. subcategory Set,, of Set

+ reader monad R

e.g. base types nat, bool _

+ true, false and n for ne N + [{[ggg]l]]] ZI\{IO 1}

+ read, ... ? A
signature S semantic model (M, T,s)

= chosen base t.ypes, + N icir\g:]tg r(]:;p:\r:(;:lu_,(_:ts M
effect operations, + interpretation s
imiti

e + conditions on M, s

U

fully abstract model OHR(M)
of read-only state

6/59

e.g. base type real e.g. small sub-CCC of Qbs

+ sample, score and normalise + probability monad
+ f for each measurable f + [real] = (R, Xg)
[
signature S semantic model (M, T,s)
— e e s + = CCC with coproducts M

+ strong monad T
+ interpretation s
+ conditions on M, s

effect operations,
& primitives

U

fully abstract model OHR(M)
of an idealised probabilistic programming language

6/59

The big picture

7/59

The big picture

Obstruction to (M, T,s) being fully abstract:

3 morphisms in M expressing behaviour the syntax cannot
[c.f. parallel-or]

7/59

The big picture

Obstruction to (M, T,s) being fully abstract:

3 morphisms in M expressing behaviour the syntax cannot
[c.f. parallel-or]

Solution:
remove all such counterexamples to contextual equivalence

7/59

Up next: a recipe that doesn't quite work
... but is the template for our construction

8/59

Up next: a recipe that doesn't quite work
... but is the template for our construction

a simple model of
read-only state

8/59

Up next: a recipe that doesn't quite work
.but is the template for our construction

not fully abstract!
counterexample &

W

a simple model of
read-only state

8/59

Up next: a recipe that doesn't quite work
... but is the template for our construction

a simple model of
read-only state

add relations

refined model
without x as
a morphism

8/59

Up next: a recipe that doesn't quite work

... but is the template for our construction

a simple model of
read-only state

add relations

refined model
without x as
a morphism

",

L
not fully abstract!
counterexample
in function spaces

[not well-pointed)]

8/59

Up next: a recipe that doesn't quite work
... but is the template for our construction

a simple model of
read-only state

add relations

refined model
without ~ as

add concreteness a morphism

refined model
without x as a morphism
without ~ in function spaces

[recover well-pointedness]

8/59

Up next: a recipe that doesn't quite work

... but is the template for our construction

a simple model of
read-only state

add concreteness

refined model
without x as a morphism
without ~ in function spaces

¢ [recover well-pointedness]

not fully abstract!
other counterexamples
v relations not strong enough

add relations

refined model
without x as
a morphism

8/59

Up next: a recipe that doesn't quite work
... but is the template for our construction

a simple model of
read-only state

add relations

refined model
without ~ as
add concreteness a morphism

refined model
without x as a morphism
without ~ in function spaces

¢ [recover well-pointedness]

OHR construction =

| .
not fully abstract! same pattern, but with
other counterexamples

> relations not strong enough every possible relation

8/59

A motivating example: read-only state [Matache & Staton]

Idea [omitting sums for now]

1. A global, one-bit memory cell

2. You can read, but not write

9/59

The signature

10/59

types 7 1= bool | 7 x 7 | 1 | 7 > 7T

11/59

= bool | T

*

o R S

variables
product types

function types

11/59

types 7 1= bool | 7 x 7 | 1 | 7 > 7T

terms M
STLC
X # variables
| (M,M) # product types
| (M)
| (
| Ax .M # function types
| MM
primitives
| tt # boolean values
ff
A # boolean operations
Vv

-/

if M then M else M # branching

11/59

types 7 1= bool | 7 x 7 | 1 | 7 > 7T

terms M
STLC
X # variables
| (M,M) # product types
| (M)
| (
| Ax .M # function types
| MM
primitives
| tt # boolean values
ff
A # boolean operations
Vv

|
|
|
| —
| if M then M else M # branching
effect operations
| read : 1 — bool # read from the cell

11/59

The semantic model

12/59

A model (Fin, R, s)

Idea:
1. Interpret programs as functions;
2. Parametrise by what's in the cell.

13/59

A model (Fin, R, s)

Idea:
1. Interpret programs as functions;
2. Parametrise by what's in the cell.

e Use the category Fin of finite sets;

13/p9

A model (Fin, R, s)

7~

Idea:
1. Interpret programs as functions;
2. Parametrise by what's in the cell.

e Use the category Fin of finite sets;
e Use the natural interpretation:

s[bool] :=2:= {0, 1}
sfo tt : bool] = const;
s[o + ££ : bool] = constg
s[F = =M : bool] = Xy . Ai . = (s[M](~)(i))
sl + read() : bool] = Ay. Ai.i

13/}

b9

A model (Fin, R, s)

Idea:
1. Interpret programs as functions;
2. Parametrise by what's in the cell.

e Use the category Fin of finite sets;
e Use the natural interpretation:

s[bool] :=2:= {0, 1}
sfo tt : bool] = const;
s[o + ££ : bool] = constg
s[F = =M : bool] = Xy . Ai . = (s[M](~)(i))
sl + read() : bool] = Ay. Ai.i
o Use the reader monad: RX := (2 = X):

SIIO =M: T]] © R(S[[T]]) s[M] (i) = valuell\./l returns
5[[r M : 7-]] : 5[[r]] — RS[[T]] when i in the cell

13/}

b9

(Fin,R,s) is not fully abstract [Matache & Staton]

14 /59

(Fin,R,s) is not fully abstract [Matache & Staton]

apply f : (1 — bool) — bool to Ax . tt
then to Ax . ff

then take the disjunction

M = xf . (f (Ax .tt)) v (f (Ax . ff))

14 /59

(Fin,R,s) is not fully abstract [Matache & Staton]

M, M : ((1 — bool) — bool) — bool

apply f : (1 — bool) — bool to Ax . tt
then to Ax . ff

then take the disjunction

M = xf . (f (Ax .tt)) v (f (Ax . £ff))

apply f to read then to

the function negating the read value
then take the disjunction

M = Xf . (f read) v (f (Ax .—(read x)))

14 /59

(Fin,R,s) is not fully abstract [Matache & Staton]

M, M : ((1 — bool) — bool) — bool

apply f : (1 — bool) — bool to Ax . tt
then to Ax . ff

then take the disjunction

M = xf . (f (Ax .tt)) v (f (Ax . £ff))

apply f to read then to

the function negating the read value
then take the disjunction

M = Xf . (f read) v (f (Ax .—(read x)))

Intuitively, M ~. M’. But...

14 /59

(Fin,R,s) is not fully abstract [Matache & Staton]

s[M], s[M'] € R(((1 = R2) = R2) = R2)

15/59

(Fin,R,s) is not fully abstract [Matache & Staton]

s[M],s[M'] € R(((1 = R2) = R2) = R2)
Take v : (1 = R2) —» R2:

consty if g(*) = consty
r(g) =
constg else

Then

sIMI(N (%) () = 1 # 0 = s[MT () (%) ()

15/59

What goes wrong?

The model describes behaviours Aggs cannot express

16 /59

What goes wrong?

The model describes behaviours Aggs cannot express

&) consty if g(*) = consty
k(g) =
constg else

x knows how g behaves
both when the cell contains 0
and when it contains 1

State is read-only
— programs can't do this!

16 /59

What goes wrong?

The model describes behaviours Aggs cannot express

(&) const; if g(*) = consty
k(g) :=
constg else

x knows how g behaves
both when the cell contains 0
and when it contains 1

State is read-only
— programs can't do this!

K is a counterexample to contextual equivalence

16 /59

a simple model of
read-only state

/JxAFfJVAfJV

not fully abstract!
counterexample

17/59

a simple model of
read-only state

/M

not fully abstract!
counterexample

add relations

refined model
without ~ as
a morphism

17/59

A refined model (L, R, t)

Idea:

- pair each set with relations Ry and Ry

- restrict to functions preserving these relations
preserving R; v~ respecting behaviour when cell contains i

18/59

A refined model (L, R, t)

Idea:

- pair each set with relations Ry and Ry

- restrict to functions preserving these relations
preserving R; v~ respecting behaviour when cell contains i

The cartesian closed category L

objects: triples (X, Ro, R1)

18/59

A refined model (L, R, t)

Idea:

- pair each set with relations Ry and Ry

- restrict to functions preserving these relations
preserving R; v~ respecting behaviour when cell contains i

The cartesian closed category L

X € Fin
R,'Elz

objects: triples (X, Ro, R1)

maps (X, Ro, R1) — (Y, So, $1):
maps f : X — Y preserving the relations

\HI (x,x'Ye R = (fx,fx')eS;

fori=1,2

18/59

The cartesian closed category L

objects: triples (X, Ro, R1)

maps (K7 RO; Rl) = (17 507 51):
maps f : X — Y preserving the relations

19/59

The cartesian closed category L

objects: triples (X, Ro, R1)
maps (X, Ro, R1) — (Y, So, S1):
maps f : X — Y preserving the relations

The monad R - defined by T T-lifting

(h,h") € R(S))

<~ (hi,hi)eS;

19/59

The cartesian closed category L

objects: triples (X, Ro, R1)

maps (Ka RO; Rl) = (17 507 51):
maps f : X — Y preserving the relations

The monad R - defined by T T-lifting
R(Y, S0, 51) = (2= Y, R(%).R(S1)

(h,h") € R(S))
<~ (hi,hi)eS;

t(bool) = (2,{(0,0), (1,1)},{(0,0), (1,1)})

t(read) = s[read] v~ already preserves the relations

19/59

One step closer to full abstraction?

% is not a morphism in L!

20/59

One step closer to full abstraction?

% is not a morphism in L!

U

we've removed a
counterexample
to contextual equivalence

20/59

One step closer to full abstraction?

% is not a morphism in L!

U (L, ﬁ, t) K removed
we've removed a J’U forgetful
counterexample (Fin, R, S) K lives here

to contextual equivalence

20/59

One step closer to full abstraction?

All the structure is preserved:

(L, R, t) K removed
lU forgetful
(Fin, R, S) K lives here

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L7 ﬁ, t) K removed

lU forgetful = U(t[[K]]) = SIIK]] for all K
(Fin, R, S) K lives here

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L7 R, t) K removed

lU forgetful = U(t[[K]]) = SIIK]] for all K
(Fin, R, S) K lives here

This can never be enough

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L7 Rv t) K removed

lU forgetful — U(t[K]) = s[K] for all K
(Fin, R, S) K lives here

This can never be enough

1. Suppose (L, R, t) is fully abstract

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L, Rv t) K removed

lU forgetful — U(t[K]) = s[K] for all K
(Fin, R, S) K lives here

This can never be enough

1. Suppose (L, R, t) is fully abstract
2. ...s0 t[M] = t[M]

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L, Rv t) K removed

lU forgetful — U(t[K]) = s[K] for all K
(Fin, R, S) K lives here

This can never be enough

1. Suppose (L, R, t) is fully abstract
2. ...s0 t[M] = t[M]
3. Then s[M] = U(t[M]) = U(t[M']) = s[M'] .

21/59

One step closer to full abstraction?

All the structure is preserved ...so the semantics is preserved:
(L, Ra t) K removed

lU forgetful — U(t[K]) = s[K] for all K
(Fin, R, S) K lives here

This can never be enough - relations are never sufficient

1. Suppose (L, R, t) is fully abstract
2. ...s0 t[M] = t[M]
3. Then s[M] = U(t[M]) = U(t[M']) = s[M'] .

21/59

Diagnosing the problem

r € s[(1 — bool) — bool] = U(t[(1 — bool) — bool]))

22 /59

Diagnosing the problem

r € s[(1 — bool) — bool] = U(t[(1 — bool) — bool]))

U
t[M], t]M] : t[(1 — bool) — bool] — R(t[bool])
can still disagree on x!

22/59

Diagnosing the problem

r € s[(1 — bool) — bool] = U(t[(1 — bool) — bool]))

U
t[M], t[M'] : t[(1 — bool) — bool] — R(t[bool])
can still disagree on x!

K is not in the hom-sets in L

22/59

Diagnosing the problem

r € s[(1 — bool) — bool] = U(t[(1 — bool) — bool]))

U
t[M], t[M'] : t[(1 — bool) — bool] — R(t[bool])
can still disagree on x!

% is not in the hom-sets in I but « is in the function spaces in L

22/59

a simple model of
read-only state

M

not fully abstract!
counterexample

add relations

refined model
without ~ as
a morphism

B

L
not fully abstract!
counterexample x
in function spaces

[not well-pointed]

23/59

not fully abstract!
counterexample

M

add relations
\ refined model

without ~ as

a simple model of
read-only state

add concreteness a morphism
refined model Eﬁ
without x as a morphism)
without x in function spaces not fully abstract!

counterexample x

[recover well-pointedness] in function spaces

[not well-pointed]

23/59

Removing from the function space

24 /59

Removing from the function space

Observation

x € U(t[(1 — bool) — bool]))

but there is no global element in L
v : 1 — t](1 — bool) — bool]

such that v(*) = x.

= IL is not well-pointed
[f=giff foy=goxy
for all global elements ~]

24 /59

Removing from the function space

Observation «~» x appears as a shadow!

x € U(t[(1 — bool) — bool]))

but there is no global element in L
v : 1 — t](1 — bool) — bool]

such that v(*) = x.

= IL is not well-pointed
[f=giff foy=goxy
for all global elements ~]

24 /59

[Solution: restrict to things named by a global element]

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if
x'ix—>x:1—> (X,Ro, R1)

isa map in L;

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if
x'ix—>x:1—> (X,Ro, R1)

isa map in L;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

25 /59

Solution: restrict to things named by a global element

1. for (X, Ry, R1) € L, x € X is concrete if
x' x> x:1— (X, Ry, R1)

is a map in IL;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

Explicitly: for every x € X, the pair (x,x) € Ry and (x,x) € R;.

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if
x'ix—>x:1—> (X,Ro, R1)

isa map in L;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

C = full subcategory of IL. of concrete objects

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if

r

x' x> x:1— (X, R, R1)
is a map in L;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

C = full subcategory of IL. of concrete objects

C—Jji—LDR

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if
x'ix—>x:1—> (X,Ro, R1)

is a map in L;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

C = full subcategory of IL. of concrete objects

restrict to subset
of concrete elements

H
T .
2Lk
K

union relations
with diagonal

25 /59

Solution: restrict to things named by a global element

1. for (X, Ro, R1) € L, x € X is concrete if
x'ix—>x:1—> (X,Ro, R1)

is a map in L;

2. (X, Ro, R1) € L is concrete if every x € X is concrete.

C = full subcategory of IL. of concrete objects

restrict to subset
of concrete elements

H
cEi = SLow = CacCC
\K/ with monad HRj

union relations
with diagonal

25 /59

C = full subcategory of IL of concrete objects

objects: (X, Ry, R1) such that x € X = (x,x) € R;
maps: set-maps preserving the relations

restrict to subset
of concrete elements

/E\ = C a CCC A
c<—ji—SL A with monad HRj
\i/ R
K

26 /59

C = full subcategory of I of concrete objects

objects: (X, Ry, R1) such that x € X = (x,x) € R;
maps: set-maps preserving the relations

restrict to subset
of concrete elements

/E\ = C a CCC)
c<—ji—SL A with monad HRj
‘\i/ R
K

Exponentials internalise preserving relations

(X =C Y) = H(X =1 Y)

26 /59

C = full subcategory of IL of concrete objects

objects: (X, Ry, R1) such that x e X = (x,x) € R;
maps: set-maps preserving the relations

restrict to subset
of concrete elements

/H\ = C a CCC A
c<—ji 3L A with monad HRj
\i/ R
K

Exponentials internalise preserving relations

fe UH(X = Y)
iff fe UX=1LY)
and Ja global element in I corresponding to f

26 /59

C = full subcategory of IL of concrete objects

objects: (X, Ro, R1) such that xe X = (x,x) € R;
maps: set-maps preserving the relations

restrict to subset
of concrete elements

/E\ — CacCCC
C @ LDk with monad HRj
K

Exponentials internalise preserving relations

26 /59

C = full subcategory of IL of concrete objects

objects: (X, Ro, R1) such that xe X = (x,x) € R;
maps: set-maps preserving the relations

restrict to subset
of concrete elements

/E\ — CacCCC
C @ LDk with monad HRj
K

Exponentials internalise preserving relations

v~ concreteness removes ~ from the function space
26 /59

Success!

Our new semantic model:

27 /59

Success!

Our new semantic model:

1. CCCC

27 /59

Success!

Our new semantic model:

1. CCCC
2. monad HRj

27 /59

Success!

Our new semantic model:
1. CCCC
2. monad HRj

3. interpretation t by restriction

27 /59

Success!

Our new semantic model:
1. CCCC
2. monad HRj

3. interpretation t by restriction

Aim: remove bad morphism «
1. from hom-sets v [logical] relations

2. from function spaces \~~» concreteness

27 /59

Success?

Our new semantic model:
1. CCCC
2. monad HRj

3. interpretation t by restriction

Aim: remove bad morphism «
1. from hom-sets v [logical] relations

2. from function spaces \~~» concreteness

But (C, HR/, t) is not fully abstract v~ need stronger relations!

27 /59

We know how to remove a single bad morphism. ..

28 /59

We know how to remove a single bad morphism. ..

Question:
how can we soup up C to remove every bad morphism?

28 /59

We know how to remove a single bad morphism. ..

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations = f is not a bad morphism

28 /59

We know how to remove a single bad morphism. ..

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations = f is not a bad morphism

A sufficient condition:
f = s[K] for some K

28 /59

We know how to remove a single bad morphism. ..

Question:
how can we soup up C to remove every bad morphism?

Want to identify a class of relations such that
f preserves those relations = f is not a bad morphism

A sufficient condition:
f = s[K] for some K v~ f is definable

28 /59

The route from here

20 /59

The route from here

1. the model we've just seen, abstractly

20 /59

The route from here
1. the model we've just seen, abstractly

2. restricting to definable morphisms

20 /59

The route from here
1. the model we've just seen, abstractly
2. restricting to definable morphisms

3. the abstract OHR construction v~ follows pattern just seen

20 /59

The route from here

—_

the model we've just seen, abstractly

2. restricting to definable morphisms

3. the abstract OHR construction v~ follows pattern just seen
4

. getting full abstraction

20 /59

30/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

_n
mC g

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

o

U
preserves
everything

—F

-
mC g

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

restrict to subset
of concrete elements

I

T TN
C<iJ = L
v
K U
union relations (FICEES
) N everything
with diagonal
Fin
R

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

U
preserves
everything

Fin

o

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

U
preserves
everything

Fin

o

(X, A) such that A < X;
maps preserve the predicate

Sub(Fin) x Sub(Fin)

cod x cod
cod: (Ac X) — X

Fin x Fin

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

(X, A) such that A < X;
maps preserve the predicate

Sub(Fin) x Sub(Fin)

d

U
preserves cod x cod
everything

cod: (Ac X) — X

Fin x Fin

%n X — (X,X)
R

31/59

A recipe for removing bad morphisms
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

(X, A) such that A < X;
maps preserve the predicate

Sub(Fin) x Sub(Fin)

d

U
preserves cod x cod
everything

cod: (Ac X) — X

Fin x Fin
X — (X,X)

_n
mC g

NB: two relations v~ two categories on RHS

31/59

A recipe for removing bad morphisms «

(X, A) such that A < X;

HRj - R maps preserve the predicate
1, Q | |
Csi— L Sub(Fin) x Sub(Fin)

~_T ~ 1
K U
preserves cod x cod
everything

Fin X (X X) Fin x Fin
’U ’
R

32/59

A recipe for removing bad morphisms «

(X, A) such that A < X;

HRj R maps preserve the predicate
C<i L Sub(Fin) x Sub(Fin)
\\I/ 0
K h .
preserves cod x cod
everything
if £ definable

Fin x Fin
here X = (X,X)

-n
mC g

32/59

A recipe for removing bad morphisms «

(X, A) such that A < X;

HRJ' - R maps preserve the predicate
0 Q
@ L Sub(Fin) x Sub(Fin)
then f definable K 4 v
here preserves cod x cod
everything
if £ definable S
here X = (X,X)

-n
mC g

32/59

A recipe for removing bad morphisms

(X, A) such that A € X;

HRj R maps preserve the predicate
n_Eq
gf& L Sub(Fin) x Sub(Fin)
then f definable K 4 v
here preserves cod x cod
everything
if £ definable e
here X — (X,X)

_n
g

Every definable f : s[I] — T(s[o]) lifts to f : t[[] — T(t[o])

How can we change this construction so only definable maps lift?

32/59

K F, abstractly

Idea:
replace relations on sets ...

(X, A) such that A C X;
maps preserve the predicate

L ———— Sub(Fin) x Sub(Fin)
A

cod: (Ac X) — X

Fin X o> (XX Fin x Fin
V) R
R

33/59

K F, abstractly

Idea:
replace relations on sets . ..

with families of relations indexed by contexts

— objects: contexts

AX . M(F(=), X)

Con—~ maps: context renamings

33/59

The Category KM’F Of Krlpke relatlons [Jung & Tiuryn, Alimohamed]

s)

34 /59

The Category KM’F Of Krlpke relatlons [Jung & Tiuryn, Alimohamed]

s)

data: - CCC M “semantic _

interpretation
- F:Con® > M
t

category of contexts
and renamings

34 /59

The category Ky r of Kripke relations

[Jung & Tiuryn, Alimohamed]

~

data: - CCCM “semantic .

interpretation

- F:C?n"p—»/\/l

category of contexts
and renamings

objects: (W, R)
maps: (W,R) 1 (W' R")

34 /59

The category Ky r of Kripke relations

[Jung & Tiuryn, Alimohamed]

~

data: - CCCM “semantic

interpretation”
- F:Con®® - M
{

category of contexts
and renamings

redicate = Kripke relation
object e M P P

{R(r) S M(Fr7 W)}FECOn
W/LL\ﬂk compatible with renaming

objects: (W, R)M

maps: (W,R) 1 (W' R")

34 /59

The category Ky r of Kripke relations

[Jung & Tiuryn, Alimohamed]

~

data: - CCCM “semantic

interpretation”
- F:Con®® - M
{

category of contexts
and renamings

) predicate = Kripke relation
object e M

{R(r) S M(Fr7 W)}FECOn
W/LL\ﬂk compatible with renaming
objects: (W, R)M

maps: (W,R) 1 (W' R")

over Set with |FT'| = n v~ R an n-ary relation

34 /59

The category Ky r of Kripke relations

[Jung & Tiuryn, Alimohamed]

~

data: - CCCM “semantic

interpretation”
- F:Con®® - M
{

category of contexts
and renamings

) predicate = Kripke relation
object e M

{R(r) S M(Fr7 W)}FECOn
W/LL\ﬂk compatible with renaming
objects: (W, R)M

maps: (W,R) 1 (W' R")
\/\/\/L
f-w-w
preserves the predicate
he R(T) = (foh)e R'(IN

over Set with |FT'| = n v~ R an n-ary relation

34 /59

The Category KM’F Of Krlpke relatlons [Jung & Tiuryn, Alimohamed]

L\/\‘\AR compatible with renaming
objects: (W, R)M
f

maps: (W,R) = (W', R')

. - CCC M
el - F:Con®® - M
predicate = Kripke relation
et € A {R(T) € M(FT, W)}recon

Fact: Ky, risa CCC
Notation: (W,R) = (X,S) = (W = X,R>S)

35/59

The Category KM’F Of Krlpke relatlons [Jung & Tiuryn, Alimohamed]

s)

- CCC M

ez - F:Con®® - M

predicate = Kripke relation

object e M {R(r) c M(FF, W)}FeCon

Mj/\/\\ compatible with renaming
objects: (W, R)M

maps: (W,R) LR (W' R

Fact: Ky, risa CCC
Notation: (W,R) = (X,S) = (W = X,R>S)

(Xl, e ,Xm) € R(A) = Wl = (fp(l)xb 00T fp(m)Xm) € S(A) <)(FA

Krlpke relatlons]COI' STLC deflnablllty [Jung & Tiuryn, Alimohamed, ...]

36 /59

Krlpke relatlons]COI' STLC deflnablllty [Jung & Tiuryn, Alimohamed, ...]

DEF, () := {s[[+ M : o] | M is derivable}

36 /59

Krlpke relatlons 'FOI’ STLC deflnablllty [Jung & Tiuryn, Alimohamed, ...]

DEF, () := {s[[+ M : o] | M is derivable}

- CCCM

data: F:Con® - M

objects: (W, R)
maps: (W,R) 5 (W, R))

36 /59

Krlpke relatlons 'FOI’ STLC deflnablllty [Jung & Tiuryn, Alimohamed, ...]

DEF, () := {s[[+ M : o] | M is derivable}

- CCCM

data: F:Con® - M

definability predicate
slo] e M {DEF,,(I") < M(s[r], s[o]) }recon

L\/\/\x compatible with renaming
Y Nax

objects: (W,R)™
maps: (W,R) 5 (W, R))

36 /59

CharacteriSing STLC—deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Base

Km,s[-1 Sub(égn)
U strictly cod
preserves CCC
M Con

AX . M(s[-], X)

37/59

CharacteriSing STLC—deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

§(B) := (s[A], DEFp)

HjH Km,s[-] Sub(é&l)

5
U strictly cod
preserves CCC
Base ot
M AX . M(s[], X) Con

37/59

CharacteriSing STLC-deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

8(8) := (s[8], DEF)

\LHW\ Kam,s[-] Sllb((ﬁl)

U strictly
preserves CCC

0>
—
o
2

s AX . M(s[-], X)

é

i.e. (DEF, o DEF,) = DEF, .., etc.

37/59

CharacteriSing STLC—deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Kam,s[-] Sub(é()\n)
5
U strictly cod
preserves CCC
Base —— M X ML) Con

f :s[[] — s[o] is definable <= f : 3[] — §[o]

37/59

CharacteriSing STLC-deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Km,s[-1 Sub(éo\n)
5
U strictly cod
preserves CCC
Base —— M X ML) Con

37/59

CharacteriSing STLC-deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Km,s[-1 Sub(éo\n)
5
U strictly cod
preserves CCC
Base —— M X ML) Con

37/59

CharacteriSing STLC-deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Km,s[-1 Sub(é()\n)
5
U strictly cod
preserves CCC
Base —— M X ML) Con

(s[r], DEFy) — (s[o], DEF,)

——— foid DEF,
is definable °1dry € ()

37/59

CharacteriSing STLC—deﬁna ble ma PS [Jung & Tiuryn, Alimohamed]

Km,s[-1 Sub(@l)
s
U StI’iCt|y cod
preserves CCC
Base —— M XML X Con

the definable maps are exactly those
that lift to (K sp—1, %)

37/59

What about the monad?

38/59

$(B) := (s[B], DEFs)

R\ Kms[-] Sub(Con)

5
strictly
U preserves CCC, cod
semantics
Base M o
s X . M(s[=].,X) Con

39/59

$(B) := (s[B], DEFs)

™

$

Base

f

Km,s[-1 Sub(Con)
strictly
U preserves CCC, cod
semantics
and monad
~
s /T\)/l AX . M(s[-], X) Con
T

39/59

5(8) := (Ts[5], DEF5) (T),
LLL\1 Km,s-1 Sub(@l)

$
strictly
U preserves CCC, cod

semantics
and monad 77

Base > M T

s Y AX . M(s[-], X) Con
T

39/59

§(B) := (Ts[B], DEF)

Q

ILHK Kms-] Sub(Con)
s
strictly
U preserves CCC, cod

semantics
and monad 77

Base O

s /t\)/l AX . M(s[-], X) Con
T

Restricting to values

for (TX, R) € KM,F

R (T) == {f |nx o f e R(T)}

SO (X, Rval) S KM,F

39/59

4(8) = (s[6], DEFS) (Tl

IL\R Kam,s[-] Su})(é()\n)

$
strictly
U preserves CCC, cod
semantics

and monad

5 Con

Base M
AX . M(s[-], X

T

Restricting to values

for (TX, R) € KM,F
R (T) == {f |nx o f e R(T)}

SO (X, Rval) € KM,F

39/59

8(B) = (s[A], DEF3")

Kmsi-1 Sub(Con)
strictly
U preserves CCC, cod
semantics
and monad
Con

AX . M(s[-], X)

40/59

8(B) = (s[A], DEF3")

HH\ Km,s[-] Sub(Con)
§
strictly
U preserves CCC, cod
semantics
and monad
Base Sor
s /%)/l AX . M(s[-], X) Con
T

choosing T by TT-lifting

40/59

4(8) = (s[8], DEF}) (Tl

IL\ Km,s[-1 Sub((ﬁi)

§
strictly
U preserves CCC, cod
semantics

and monad

Con

= {E\)/l AX . M(s[-], X)
T

choosing T by TT-lifting ... for every type o:
8[o] = (s[o], DEFY) and T3[o] = (Ts[o], DEF,)

40/59

4(8) = (s[8], DEF}") (Tl

LHW\ Km,s[-] Sub(C/o\n)

5
strictly
U preserves CCC, cod
semantics

and monad

—

Con

= '//C\jl AX . M(s[-], X)
—

choosing T by TT-lifting ... for every type o
8[o] = (s[¢], DEFY) and T3[o] = (Ts[o], DEF,)

f :s[[] — s[o] is definable < f : 3[I'] — §[o]

40/59

4(8) = (s[8], DEF}) (Tl

LLH\ Km,s[-1 Sllb(&;l)

s
strictly
U preserves CCC, cod
semantics

and monad

Con

M

s AX . M(s[-], X
") (s[-1, %)
b

choosing T by TT-lifting ... for every type o:
$[o] = (s[o], DEF?) and T3[o] = (Ts[o], DEF,)

the definable maps are exactly those
that lift to (Kuq s, T,9%)

40/59

The route so far
the model we've just seen, abstractly
restricting to definable morphisms
3. the abstract OHR construction v~ follows pattern just seen

4. getting full abstraction

41/59

42 /59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

N2

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

1—[predicates
i€l on B;
fibration for
logical relations

M IIieHE”
U
T

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

relations I1 <predicates>
iel

on M on B;
A
fibration for fibration for
logical relations logical relations
M = [Tic Bi
T

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces
T T-lifting
of T
T
(B _
relations H predicates
— .
on M i€l on B;
A
Iﬂf/ fibration for fibration for
fff logical relations logical relations
objects: (X, {X; | i€]I})
maps: M-maps preserving M = Hie]l B;
every relation U
=

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces
T T-lifting
of T
i
concrete M d
.) i redicates
relations —— j — relations H . 2
on M ie on B;
on M F
fibration for fibration for
logical relations logical relations
objects: (X, {X; | i€]I})
maps: M-maps preserving M = Hie]l B;
every relation U
=

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

T T-lifting
of T
ired b
axiom on M i
H (B
K_\ . M
COMETEE (2 S predicates
relations < j T4> on M - iel on B:
on M ~— _— T '
K
always fibration for fibration for
exists logical relations logical relations
objects: (X, {X; | i€]I})
maps: M-maps preserving M Hie]l B;
every relation U F
T

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

T T-lifting
~ of T
W:=HTj
@ A
i N

concrete . ————_) .
X T predicates
relations < j —— relations _— | |I.GH <

T on on B;
on M T~ on M j
K
fibration for fibration for
logical relations logical relations
objects: (X, {X; | i€]I})

maps: M-maps preserving
every relation

_ [Tt B
iy
U

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x
1. Use relations v~ stops them being morphisms
2. Use concreteness v~ cuts them out function spaces

T T-lifting
N of T
W= HT;j
i
e ﬂt B (o
mode concrete a H
ST T relations predicates
relations < j —— am — llial onB;
onM T~ © 4 '
K
fibration for fibration for
logical relations logical relations
objects: (X, {X; | i€]I})

maps: M-maps preserving
every relation

_ [Tt B
iy
U

NB: I-many categories on RHS v~ T-many relations

43/59

A recipe for removing bad morphisms x

+
OHR H m

model K\ K i
redicates
KLR concrete <j— 4 relations —— Hleu (P)

relations u/ on B;
on M,
on M K
fibration for fibration for
logical relations logical relations
objects: (X, {X; | i€]I})
maps: M—ma'ps preserving M Hie]l B;
every relation U
T

NB: I-many categories on RHS v TI-many relations

44 /59

A recipe for removing bad morphisms «

+
OHR H m

model </_\ K i
redicates
KLR concrete <j— 4 relations —— Hleu (P >

relations u/ on B;
on M,
on M K
fibration for fibration for
logical relations logical relations
objects: (X, {X; | i€]I})

maps: M-maps preserving

M Hie]l B;
every relation U
T

NB: I-many categories on RHS v TI-many relations

Key trick: choose I, F, B; and interpretation § so that Jip € I with

§[o];, = DEF}* and WS3[o], = DEF,

44 /b9

0) H
concrete <. T - predicates
: Jj — relations —— H N
relations « = T ie on B;
on M,
on M K
fibration for fibration for
logical relations logical relations
objects: (X, {X;|i€e H})

[IEHBi

maps: M-maps preserving

M
every relation U
T

Key trick: choose I, F, B; and § so that diy € I with.

$[o];, = DEF}* and W3[o], = DEF,

45 /59

) K ;
/\ .
concrete ;. . T ; predicates
.~ < j— relations —— II-H
relations ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...

45 /59

) K ;
/\ .
concrete ;. . T ; predicates
.~ < j— relations —— II-H
relations ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...

45 /59

) K ;
/\ .
concrete ;. . T ; predicates
.~ < j— relations —— II-H
relations ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...

45 /59

=
@ H m
concrete <. T E§ predicates
.~ < j — relations —— -
relations ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...
so f preserves DEF. ..

45 /59

=
@ H m
concrete <. T E§ predicates
.~ < j — relations —— -
relations ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

45 /59

7
@ H m
concrete <. T K predicates
.~ < j — relations —— -
relations T ie on B;
on M
on M K 1
fibration for fibration for
logical relations logical relations
objects: (X, {X; | iel})
maps: M-maps preserving M l_[ie]l]Bi
every relation ’U F
T

Key trick: choose I, F, B; and § so that dig € I with.

$[o];, = DEF}* and W3[o], = DEF,
then:

f :8[I] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable v so every map is definable!

45 /59

Fact:

46 /59

Fact:

1. O is always well-pointed;

46 /59

Fact:

1. O is always well-pointed;

2. any well-pointed model with every morphism definable
is fully abstract.

46 /59

Fact:

1. O is always well-pointed;

2. any well-pointed model with every morphism definable
is fully abstract.

= it remains to instantiate the construction

46 /59

Fact:

1. O is always well-pointed;

2. any well-pointed model with every morphism definable
is fully abstract.

= it remains to instantiate the construction

Strategy: see what we need as we go along!

46 /59

47 /59

Key trick: Choose data and an interpretation § so that Jip € I such
that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

48 /59

Key trick: Choose data and an interpretation § so that Jip € I such
that

8[c], = DEF¥ and W3[o]. = DEF,
then: 0 0
f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

W :=HTj
7
H ()
O K .
K_\ o
concrete s T . predicates
c < j — relations ——— | |']1
relations « = T ie on B;
on M,
on M K
fibration for fibration for
logical relations logical relations

objects: (X, {X;|iel})
maps: M-maps preserving T C M Hie]l Bi

every relation F

Key trick: Choose data and an interpretation § so that Jip € I such

that

then:

§[o]. = DEF and W3[o], = DEF,
1o o Io

f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

maps:

W :=HTj
7
i (
con(g)rete T K —~
relations ¢ I T relations ———————— [;;; Sub(A;)
' on M
on M K 4
fibration for [1; cod
logical relations
objects: (X, {X;|iel}) g
M-ma.ups preserving M = Hie]l Ai
ry relation

eve

59

Key trick: Choose data and an interpretation § so that Jip € I such

that

then:

§[o]. = DEF and W3[o], = DEF,
1o o Io

f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

maps:

W :=HTj
7
i (
con(g)rete T K —~
relations ¢ I T relations ———————— [;;; Sub(A;)
~— ' — on M
on M K 4
fibration for [1; cod
logical relations
objects: (X, {X;|iel}) g
M-maps preserving M ST T N Hie]l Ai

eve

ry relation

59

Key trick: Choose data and an interpretation $ so that 3ip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[I] — W§[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs

49 /59

Key trick: Choose data and an interpretation § so that 3ip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs

define a model (O, W, 3)
in which maps preserve DEF

49 /59

Key trick: Choose data and an interpretation § so that 3ip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs
define a model (O, W,8) ~"""""""" construct the
in which maps preserve DEF DEF predicate

49 /59

Key trick: Choose data and an interpretation § so that 3ip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs

define a model (O, W,8) ~"""""""" construct the
in which maps preserve DEF <.~ DEF predicate

49 /59

Key trick: Choose data and an interpretation $ so that 3ip € T such

that
then $[o];, = DEF}* and W3[o], = DEF,
f:8[I] — W§[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs

define a model (O, W, 3) JUT N
in which maps preserve GETEUE T
. . DEF predicate
every possible relation

49 /59

Key trick: Choose data and an interpretation § so that Jip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs

define a model (O, W, 3) N
in which maps preserve SETTETU
. . DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

49 /59

Key trick: Choose data and an interpretation § so that Jip € I such

that
5[o], = DEF? and W3[o], = DEF,
then: 0 0
f :8[l] — WS[o] preserves every relation, ...
so f preserves DEF. ..
so f is definable

Chickens and eggs > c.f. impredicativity

define a model (O, W, 3) N
in which maps preserve SETTETU
. . DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

49 /59

Chickens and eggs > c.f. impredicativity

define a model (O, W, 3) AT construct the

in which maps preserve DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

50 /59

Chickens and eggs > c.f. impredicativity

define a model (O, W, 3) AT construct the

in which maps preserve DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

Need to quantify over relations on @ before constructing O

50 /59

Chickens and eggs ~ c.f. impredicativity

define a model (O, W, 3) (PPN ot the

in which maps preserve DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

Need to quantify over relations on @ before constructing O

Solution: relations on Q are relations on M|

50/59

B
(1
K

[0) H
concrete o T . —
Celations < — relations ————————— [[;.; Sub(A;)
' on .A/l
on M K 4
fibration for [1; cod
logical relations
objects: (&, {X; | i€ I[}) A
maps: M-maps preserving M Hie]l Ai

every relation X = SMUF (=), X))

51/59

W :=HTj

;
@

@) H K
K_\ e
Conerete « j —— relations ——————— [[;; Sub(&;)
v on M
on M K
fibration for [1; cod

logical relations
objects: (X, {X;|iel})

maps: M-maps preserving ,/\/l I I A;
° Fi(—] el “51
every relation X CMUF(=),XD); !

Have U : O - M

51/59

W :=HTj

+
0) H ()

K_\ K

concrete ==
- LJ“#‘érelatlonSAAAAAAAAAA%H 1 Sub(4)
relations « = T ie
on M |
on M K
fibration for [1; cod
logical relations
objects: (&, {X; | i€]I}) g
maps: M-maps preserving M Hie]l Ai

every relation X CMUF(=), XD

Have U: O — M so for any X € @ and R on X we get
R(I) = O(F(T), X)

51/59

W :=HTj

+
i @

0)
K_\ K
concrete ==
rdanonscij relations —————— [;;; Sub(A;)
&_/ on .A/l
on M K
fibration for [1; cod
logical relations
objects: (&, {X; | i€]I}) g
maps: M-maps preserving M Hie]l Ai

every relation X = (M(Fi(=),X));

Have U: O — M so for any X € @ and R on X we get
R(I) = O(F(),X) = M(UF(I), X)

51/59

W :=HTj

3
" @

O o~ K
concrete =
rdaﬂonscﬁj relations —————— [];;; Sub(A;)
&_/ on M
on M K
fibration for [1; cod
logical relations
objects: (&, {X; | i€]I}) -
maps: M-maps preserving M Hie]l Ai

every relation X = (M(Fi(=),X));

Have U: O — M so for any X € O and R on X we get
R(I) = O(F(),X) = M(UF(T), X)

v~ relations over Q induce relations over M|

51/59

define a model (O, W, 3) AT construct the

in which maps preserve DEF predicate
every possible relation

identify DEF as one
of the preserved predicates

52 /59

define a model (O, W, 3)
in which maps preserve ~ ~"""""" construct the
every possible relation DEF predicate
over (M, T,s)

identify DEF as one
of the preserved predicates

52 /59

Aim:

define a model (O, W, §) in which maps preserve
every possible relation over (M, T,s)

53 /59

Aim:
define a model (@, W, §) in which maps preserve
every possible relation over (M, T ,s)

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

53 /59

Aim:
define a model (@, W, §) in which maps preserve
every possible relation over (M, Ts)

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

Then: will get 3ip €1

$[o], = DEF}* and W3[o], = DEF,

53 /59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

54 /59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, LA
W:=HTj C concrete ;T relations ————— I

relations v
on M K oIt 41

fibration for
logical relations

objects: (X, {X;|iel})
maps: M-maps preserving T d M
every relation

X = (M(Fi(=),X));

Sub(A;)

iel

[cod

—

Hie]l Aj

54 /59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

0 H K
/_\
=HT;j (concrete &) *> relations ——— > [|

fibration for
logical relations

objects: (X, {X;|iel})
maps: M-maps preserving T d M
every relation

X = (M(Fi(=),X));

Need from every j € I:
1. category A;

Sub(A;)

i€l

I cod

—~

HieH A

54 L

59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

0 H K
/_\
—HTj (concrete < j —— relations ——————— I1

atlonsv on M,

fibration for
logical relations

objects: (X, {X;|iel})
maps: M-maps preserving T d M
every relation

X = (M(Fi(=),X));

Need from every j € I:
1. category A;
2. functor F; : Con®® — M

Sub(A;)

i€l

I cod

—~

HieH A

54 L

59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

0 H K
/\
=HT;j (concrete &) *> relations ——— > [|

fibration for
logical relations
objects: (X, {X;|iel})

maps: M-maps preserving T d M
every relation

X = (M(Fi(=),X));

Need from every j € I:
1. category A;
2. functor F; : Con®® — M
3. a lifting T; of T to Km,F

Sub(A;)

i€l

I cod

—~

Hie]l A

54 L

59

Tactic:
1. use I to quantify over all possible relations
so that DEF must appear
2. define interpretation to look it up

0 H K
/\
=HT;j (concrete &) *> relations ——— > [|

fibration for
logical relations
objects: (X, {X;|iel})

maps: M-maps preserving T d M
every relation

X = SM(Fi(=),X));

Need from every j € I:
1. category A;
2. functor F; : Con®® — M
3. a lifting T; of T to Km,F
4. an interpretation r in Conc(Ku r) — K f
v~ to define our semantic interpretation in O

Sub(A;)

i€l

I cod

—~

Hie]l A

54 L

59

Bake all the data into [

Need from every i € I:
1. category A;

2. functor F; : Con°® — M
3. alifting T; of T to K, F;
4. an interpretation r in Conc(Kaq) — K r

Is7?

55 /59

Bake all the data into I

Need from every i € I:
1. category A;

2. functor F; : Con°® - M
3. a lifting T; of T to Ky,
4. an interpretation r in Conc(Kaq) — K r

1. set Sites 3 Con®?

I> (A e Sites,...)

55 /59

Bake all the data into I

Need from every i € I:

1. category A;

2. functor F; : Con°® - M

3. a lifting T; of T to Ky,

4. an interpretation r in Conc(Kaq) — K r
1. set Sites 3 Con®P
2. for every A € Sites,

Func(A) = [A, M],

I 5 (A € Sites, F € Func(A),...) 55 /59

Bake all the data into I

Need from every i € I:
1. category A;
2. functor F; : Con°® - M
3. a lifting T; of T to Ky,
4. an interpretation r in Conc(Kaq) — K r

1. set Sites 3 Con®P
2. for every A € Sites,
Func(A) = [A, M],
3. for every F € Func(A) = [A, M],
Lift(A, F) = {monad liftings to K r}

Is (AeSites,FeFun(A),—’A_ELift(Aa F),...) 5550

Bake all the data into I

Need from every i € I:

1. category A;

2. functor F; : Con°® - M

3. a lifting T; of T to Ky,

4. an interpretation r in Conc(Kaq) — K r
1. set Sites 3 Con®P
2. for every A € Sites,

Func(A) = [A, M],

3. for every F € Func(A) = [A, M],
Lift(A, F) = {monad liftings to K r}
4. for T e Lift(A, F),

Interp(A, F, T) = {interpretations in Conc(Kp,F)}

Is (A € Sites, F € Func(A), T e Lift(A, F), r € Interp(A, F, f)) e

Defining the semantic interpretation: just look it up in I!

56 /59

Defining the semantic interpretation: just look it up in I!

1. set Sites 3 Con?
2. for every A € Sites,

Func(A) = [A, M],
3. for every F € Func(A) = [A, M],
Lift(A, F) = {monad liftings to K, }
4. for T e Lift(A, F),
Interp(A, F, T) = {interpretations in Conc(Kur,)}

I> (A € Sites, F € Func(A), Te Lift(A, F), r € Interp(A, F, 7’\')>

56 /59

Defining the semantic interpretation: just look it up in I!

4. for T e Lift(A, F),
Interp(A, F, T) = {interpretations in Conc(Kay,r,)}

I (A € Sites, F € Func(A), T e Lift(A, F), r € Interp(A, F, ?))

56 /59

Defining the semantic interpretation: just look it up in I!

4. for T e Lift(A, F),
Interp(A, F, T) = {interpretations in Conc(Kaqr)}

Is (A € Sites, F € Func(A), T Lift(A, F), r € Interp(A, F, ?))

carriers: take the interpretation from M v~ 3§[3] := s[f]

56 /59

Defining the semantic interpretation: just look it up in I!

4. for T e Lift(A, F),
Interp(A, F, T) = {interpretations in Conc(Kaqr)}

Is (A € Sites, F € Func(A), T Lift(A, F), r € Interp(A, F, ?))

carriers: take the interpretation from M v~ 3§[3] := s[f]
relations: use what the index gives:

S[B](A,F, T,r) = (relation part of r(3))

56 /59

Picking iy v~ look up DEF

Want: §[o], = DEF}™

57 /59

Picking iy v~ look up DEF

Want: §[o], = DEF}™

Note: DEFY(I') € O(3[], W5[o])

57 /59

Picking iy v~ look up DEF

Want: §[o], = DEF}™

Note: DEFY™(I') < O(3[], W3[o]) < M(US[I], UWS[o])

57 /59

Picking iy v~ look up DEF

Want: §[o];, = DEF}*
Note: DEFY™(I') < O(3[I'], W3[o]) < M (US[I], UWS[o])

Picking the index i

57 /59

Picking iy v~ look up DEF

Want: $[o], = DEF}™
Note: DEFY(I') < O(3[I], Ws[o]) < M (US[I], UWS[o])

Picking the index iy

4. r(B) := (s[[ﬁ]],DEF‘éM)

57 /59

Picking iy v~ look up DEF

Want: $[o], = DEF}™
Note: DEFY(I') < O(3[I], Ws[o]) < M (US[I], UWS[o])

Picking the index iy

57 /59

Picking iy v~ look up DEF

Want: $[o], = DEF}™

Note: DEFY(I') < O(3[I], Ws[o]) < M (US[I], UWS[o])

Picking the index iy

. A:=Con®

. F = (Con® Al g Y, M)
T chosen by T T-lifting

r(B) = (s[[ﬁ]],DEF‘éM)

NS

57 /59

1. A:=Con?

28FN= (Con®P S, oY M)
3. T chosen by T T-lifting

4. r(B) := (s[8], DEF}")

carriers: take the interpretation from M v~ 3[4] := s[S]
relations: use what the index gives:

S[BI(A, F, T,r) := (relation part of r(3))

58 /59

1. A:=Con?

2. F:=(Con® L N SN M)
3. T chosen by TT-lifting

4. r(B) == (s[8], DEF5")

carriers: take the interpretation from M v~ 3[S3] := s[f]
relations: use what the index gives:

S[BI(A, F, T,r) := (relation part of r(3))

Key lemma

For iy as above, and all o € Type:

$[o], = DEF}* and W3[o], = DEF,

58 /59

1. A:=Con?

2. F:=(Con®® g Y, M)
3. T chosen by T T-lifting

4. r(B) := (s[[ﬁ]],DEFEal)

carriers: take the interpretation from M v $[3] := s[f]
relations: use what the index gives:

S[BI(A, F, T,r):= (relation part of r(3))

Key lemma

For iy as above, and all o € Type:

$[o], = DEF}* and W3[o], = DEF,

Hence every f : 8[| — W§[o] is definable

58 /59

1. A:=Con?

2. F:=(Con®® A g Y, M)
3. T chosen by T T-lifting

4. r(B) := (s[8],DEFZ")

carriers: take the interpretation from M v $[3] := s[f]
relations: use what the index gives:

M(A, F, T, r) = (relation part of r(ﬁ))

Key lemma

For iy as above, and all o € Type:

§[o]. = DEF® and W53[o], = DEF,
1o o Io

Hence every f : 3[] — W§[o] is definable

Hence (O, W,) is fully complete and well-pointed

58 /59

1. A:=Con?

2. F:=(Con®® A g Y, M)
3. T chosen by T T-lifting

4. r(B) := (s[8],DEFZ")

carriers: take the interpretation from M v $[3] := s[f]
relations: use what the index gives:

S[BI(A, F, T,r) := (relation part of r(3))

Key lemma

For iy as above, and all o € Type:

§[o]. = DEF® and W53[o], = DEF,
1o o Io

Hence every f : 3[] — W§[o] is definable
Hence (O, W,) is fully abstract

58 /59

Summary and future work

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
= full abstraction

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
= full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
= full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable
3. Maps in O'Hearn—Riecke model O preserve
enough relations

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
= full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable
3. Maps in O'Hearn—Riecke model O preserve
enough relations

Still to do

1. Weakening assumptions: well-pointedness, hull functor H, ...
2. Checking examples: esp. presheaf models (names, ...)
3. Universal property?

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

Summary and future work

1. Every map definable + well-pointedness
= full abstraction

2. Definability is a logical relation;
if f preserves DEF, then f is definable
3. Maps in O'Hearn—Riecke model O preserve
enough relations

Still to do

1. Weakening assumptions: well-pointedness, hull functor H, ...
2. Checking examples: esp. presheaf models (names, ...)
3. Universal property?

preprint at cs.ox.ac.uk/people/philip.saville/home.html

59 /59

https://www.cs.ox.ac.uk/people/philip.saville/home.html

	Constructing (C, Hj, [2]): a recipe
	The abstract OHR construction
	Getting full abstraction

