Logical relations, fibrations, and definability

Philip Saville, University of Oxford

(jww Ohad Kammar & Shin-ya Katsumata)

14th April 2022, Tallinn ~ |loosely based on POPL 21 paper

Motivation

restrict the maps in a semantic model
to those satisfying some property

Aim:

Motivation

Aim: restrict the maps in a semantic model

starting model| o~

to those satisfying some property

model with only
maps satisfying
some predicate

System F: parametric maps

MOtIVﬂtIOn / eg PCF: definable maps
(modulo approximation)

restrict the maps in a semantic model
to those satisfying some property

Aim:

model with only

starting model] ~~=% | maps satisfying

some predicate

Motivation

Aim:

restrict the maps in a semantic model \

to those satisfying some property
for effectful CBV languages

model with only

starting model] ~~=% | maps satisfying

some predicate

Motivation

Aim:

restrict the maps in a semantic model \

to those satisfying some property
for effectful CBV languages

model with only

starting model] ~~=% | maps satisfying

some predicate

SiiezIGle)VA use fibrations, logical relations, and glueing

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)
2. Logical relations for effectful languages

3. Full completeness
= building a model in which every map is definable

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)
2. Logical relations for effectful languages

3. Full completeness
= building a model in which every map is definable

exact link = work in progress!

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)

2. Logical relations for effectful languages conjecture extension to an
T extrinsic, 2-categorical story

3. Full completeness
= building a model in which every map is definable

exact link = work in progress!

Syntax and semantics of /1

gggggggggggggggggggggggg

Syntax Of A,m l = Moggi’s monadic metalanguage

types: f € Base | oy X0, |6 =7

terms: x | £ € Prim | op € EfOp
| MN [Ax .M | ;i(M) | m(M) | (M, M) | ()

11

Syntax of 4 - v v

types: f € Base | oy X0, |6 = 1| 1o

terms: x | £ € Prim | op € EfOp
| MN | Ax .M | m(M) | my(M) | (M, M) | ()
| return(M) | letx =N M

12

CCC interpretation of

base types and

Semantics of /1, model = (M, T, s)

strong monad

13

CCC iInterpretation of
base types and

Semantics of /1, model = (M, T, s)

strong monad

Interpretation of types:

« s|lo]] as for simply-typed lambda calculus

e s[7o]] = T(s]lo]])

14

CCC iInterpretation of
base types and

Semantics of /1, model = (M, T, s)

strong monad

Interpretation of types:

« s|lo]] as for simply-typed lambda calculus

e s[7o]] = T(s]lo]])

Interpretation of terms:

e s[|M : o] as for simply-typed lambda calculus
o sllreturn(M) : To]] = n e sllo]]

e s[[let...]] interpreted using monadic bind

15

1: Concrete relations oy example)

a flexible method for restricting models

Example: read-only state (Set, 7, s)

syntax:

base types: bool
primitives: tt : bool, ff : bool, or : bool X bool — bool, etc

effect operations: read : 1 — 7T(bool)

17

Example: read-only state (Set, 7, s)

syntax:

base types: bool
primitives: tt : bool, ff : bool, or : bool X bool — bool, etc

effect operations: read : 1 — 7T(bool)

semantics:

base category: Set
monad: reader T(X) = (2 = X)

computations of type o
=set maps s[[I']]| = (2 = s[lc])

Example: read-only state (Set, 7, s)

syntax:

base types: bool
primitives: tt : bool, ff : bool, or : bool X bool — bool, etc

effect operations: read : 1 — 7T(bool)

semantics:

base category: Set interpretation of base types and constants:

monad: reader 7(X) = (2 = X) s(bool) =2={T, 1}
s(tread) = Ax.Ai.i: 1 > (2 = 2) = T(s[[bool])
computations of type o

=set maps s[[I']] = (2 = s[lc]) S(bOOl) = AX. 1 - 2 = s[[bool]

(Set, T, s) has too many maps watcne s st

base category: Set interpretation of base types and constants:

monad: reader 7(X) = (2 = X) s(bool) = 2
s(read) = Ax. Ai.i: 1 - (2= 2) = T(s[[bool])

s(bool) =Ax. T :1 — 2 = s[[bool], etc

k:(1=>T2) = T2

AL, T ifgle)=Ai. T
K —
(8) {/11'. 1 else

20

(Set, T, s) has too many maps ez ston

base category: Set interpretation of base types and constants:

monad: reader 7(X) = (2 = X) s(bool) = 2
s(read) = Ax. Ai.i: 1 - (2= 2) = T(s[[bool])

s(t)y =Ax. T : 1 - 2 = s[[bool]], etc

k:(1=>T2) = T2

M. T ifge)=4. T —— behaves in a way
K(g) =14 .. no program can!
Al. 1L else

cf. parallel-or for PCF

21

(Set, T, s) has too many maps watcne s st

base category: Set interpretation of base types and constants:

monad: reader 7(X) = (2 = X) s(bool) = 2
s(tread) =Ax. di.i: 1 > (2 = 2) = T(s[[bool]])

s(tt) =Ax. T : 1 —» 2 = s[[bool]], etc

K:(1=>T2)—->T2 |
behaves in a way

At. T ifge)=Ai. T ——— no program can!
kK(g) =1 ..
Al. L else

distinguishes contextually-equivalent programs: — full abstraction
MM’ . (M ~,,, M’ but [M](x) # [MT(x)) fails

22

(Set, T, s) has too many maps watcne s st

base category: Set interpretation of base types and constants:

monad: reader 7(X) = (2 = X) s(bool) = 2
s(read) = Ax. Ai.i: 1 - (2= 2) = T(s[[bool])

s(t)y =Ax. T : 1 - 2 = s[[bool]], etc

K:(1=>T2)—> T2 |
behaves in a way

(¢) = Ai. T ifg(e)=Ai. T ——— no program can!
&)= A1, L else cf. parallel-or for PCF

distinguishes contextually-equivalent programs: — full abstraction
MM’ . (M ~,,, M’ but [M](x) # [MT(x)) fails

K IS a bad map: want to remove it

Idea: restrict to maps preserving relations

Define a category L of ‘predicates’

* Objects:
(X, Ry, R,) with X € Set, R, C X*

» maps (X, Ry, R)) = (¥, 8p,3)):
maps f : X — Y preserving the relation

Idea: restrict to maps preserving relations

Define a CCC L of ‘predicates’

Idea: restrict to maps preserving relations

Define a CCC L of ‘predicates’

e exponentials:
(X,Ry.R) = (¥.5),5) = (X=>Y,RyD SR, D S))

(,9) ER,DS) < ((x,x)R, = (fx,gx) €S

Idea: restrict to maps preserving relations

Define a CCC L of ‘predicates’

e exponentials:
(X,RyR) = (¥.5),5) = (X=>Y,RyDS;,,R, D S))

* terminal object:
(1, T, T) } (o) €ERDS) = ((,x)R = (fr,gx)€ES))
T={(s,s)
e products:

(X, Ry R) X (Y, 8, 8)) = (XX Y, Ry % Sy, R; % S)

((xlayl)a (Xza)’2)> S (Rl x SZ) — (X19x2) S Ri and (ylayZ) S Si

27

Idea: restrict to maps preserving relations

Define a model (L, 7, 5) of ‘predicates’

Idea: restrict to maps preserving relations

Define a model (L, 7, 5) of ‘predicates’

* Interpretation:

§(bool) = (2,{(0,0), (1,1)}, {(0,0), (1,1)})

Idea: restrict to maps preserving relations

Define a model (L, 7, 5) of ‘predicates’

* Interpretation:

§(bool) = (2,{(L, L), (T, THL{(L,L),(T,T)H})

e monad:
T(X,Ry,R) = (TX,(TR)y, (TR),)

(h,h') € (TR); <= (hi,h'i) € R,

Idea: restrict to maps preserving relations

Define a model (L, 7,§) of ‘predicates’
K is not a map |

1< (1 = Ts[[bool]]) — Ts[[bool]]
|n |]_ :‘

* Interpretation:

§(bool) = (2,{(L, L), (T, THL{(L,L),(T,T)H})

e monad:
T(X,Ry,R) = (TX,(TR)y, (TR),)

(h,h') € (TR); &= (hi,h'i) € R,

Idea: restrict to maps preserving relations

...have a model (L, 7, §) of ‘predicates’ with

TR
» morphism of models 7 : L — Set: - i
preserves m
ccc-structure .
Set - (free model)
monads U i

semantic interpretation

32

Idea: restrict to maps preserving relations

...have a model (L, 7, §) of ‘predicates’ with

TR
» morphism of models 7 : L — Set: - i
preserves m
ccc-structure .
Set - (free model)
monads U i

semantic interpretation

« new model refines the original one: L(S[[o]l, S[[z]]) C Set(s[[c]l, sl z])

33

Idea: restrict to maps preserving relations

...have a model (L, 7, §) of ‘predicates’ with

« morphism of models 7 : L — Set:
preserves

cce-structure —— problem: k € s[[(1 - Tbool) — Tbool]

—> K E (Carrier of S[[(1 — Thbool) — Tb()ol]])
monads

semantic interpretation

34

Idea: restrict to maps preserving relations

...have a model (L, 7, §) of ‘predicates’ with

« morphism of models 7 : L — Set:
preserves

cce-structure —— problem: k € s[[(1 - Tbool) — Tbool]

—> K E (Carrier of S[[(1 — Tbool) — Tb()ol]])
monads

semantic interpretation

L removes k from the hom-set, but not the function space

can still distinguish contextually-equivalent terms!

35

Concreteness: removing x from the function space

36

Concreteness: removing x from the function space

kK € S[[(1 - Tbool) — Tbool] does not correspond to a global element:

thereisnog : 1 — S[[(1 - Tbool) - Tbool] in L
such that g(e) = «

37

Concreteness: removing x from the function space

kK € S[[(1 - Tbool) — Tbool] does not correspond to a global element:

thereisnog : 1 — S[[(1 - Tbool) - Tbool] in L
such that g(e) = «

so: restrict to objects (X, Ry, R;) in which every x € X

corresponds to a global element in L

Concreteness: removing x from the function space

kK € S[[(1 - Tbool) — Tbool] does not correspond to a global element:

thereisnog : 1 — S[[(1 - Tbool) - Tbool] in L
such that g(e) = «

so: restrict to objects (X, Ry, R;) in which every x € X

corresponds to a global element in L

(X, Ry, R;) is concrete ifevery x : 1 — Xin Setliftsto (1, T, T) = (X, Ry, R)

xeX = (x,x) €R; (1 =1,2)

39

The subcategory of concrete objects

§[—] interpretation of bool etc
A restricts to Conc(LL)

Y

Set +—— (free model)
o- sl-1
T

The subcategory of concrete objects

§[—] interpretation of bool etc
A restricts to Conc(LL)

Y

Set +—— (free model)
o- sl-1
T

The subcategory of concrete objects

H restricts (X, Ry, R) to
those x € X such that

/T\ Q,T (x,x) ER; (i=1,2)

Conc(LL) j - L
_7/
R 511
m
K expands (X, Ry, R)): ¥
KX,Ry),R) = (X,RyUA,R, UA) Set m (free model)
o~ s[—

T

42

The subcategory of concrete objects

monad by
abstract
nonsense H

i /\ /
R- T (QfT

ccc by Conc(LL)] L
abstract T
nonsense: \/

[— = = leone = H(j(=) = j(=)) K (-]

Set +—— (free model)
- sl-]
T

The subcategory of concrete objects

monad by
abstract o H restricts (X, Ry, R,) to
HONSENsEe HTj A those x € X such that
qQ /_T\ ! (x,x) ER; (i=1,2)
ccc by Conc(LL)] L
abstract T
nonsense: K__,//////
= = lcone = H(j(—) = Jj(=)) K §[[—]] interpretation of bool etc
/ A restricts to Conc(LL)
K expands (X, Ry, R,): ¥
KX,Ry,R) = (X,RyUA,R, UA) Set <_]] (free model)
g s[—
= VPR SIS T R A A AP S ol B R SR
key property [(X) ;" (Y)] Cone = (](X)](Y)) C Set(X,Y)!
e ONC .

44

The subcategory of concrete objects

Set +—— (free model)

s[-1

key property [(X)=> (Y . (](X)](Y)) C Set(X Y)

mternallses the preservatlon condltlon 45 K cannot be in functlon space'

Summing up

Set +—— (free model)
0~ s[-]
T

46

Summing up

S[-1 . .
T K In function spaces

Y

Set +—— (free model)
- S [-]
T

47

Summing up

5[-1

K In function spaces

Y

Set +—— (free model)
- S [-]
T

48

Abstracting away: categories of concrete relations

idea:
1. axiomatise relations by fibrations
2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

49

Abstracting away: categories of relations

1. axiomatise relations by fibrations

P fibration

Y

M > |8
F

‘change-of-base’

Abstracting away: categories of relations

1. axiomatise relations by fibrations

objects: (X,AR) € M X [E such that FX = PR
maps: (f, /) in 4 X [t such that I'f = p(f)

K D
]
T P fibration
M > |8
F

‘change-of-base’

51

Abstracting away: categories of relations

1. axiomatise relations by fibrations

objects: (X, R) € /[X [E such that FX = PR
maps: (f, /) in 4 X [t such that I'f = p(f)

K > K
i
fibration
X,R)»X T P fibration
M > B
F

‘change-of-base’

52

Abstracting away: categories of relations

1. axiomatise relations by fibrations

objects: (X, R) € Set X Sub(Set) such that R & X?
maps: f in Set s.t. f preserves the subobject

objects: (E,R) suchthat R & E
K — Sub(Set) maps: maps in Set respecting the subjects

fibration
(X,R)— X

subobiject fibration
Set > Set (B, R~ E

‘change-of-base’

53

Abstracting away: categories of relations

Idea:

2. ccc-structure via structured fibrations

Abstracting away: categories of relations

Idea:

2. ccc-structure via structured fibrations

K D
-]
0 p
M > B
F

‘change-of-base’

Abstracting away: categories of relations

Idea:

2. ccc-structure via structured fibrations

K » K
|
T p
M » B
if £, B and . are CCCs, p strictly preserves F
CCC-structure, and F is cartesian, then: ‘change-of-base’

K is a CCC, and x strictly preserves
CCC-structure

56

Abstracting away: categories of relations

Idea:

3. monad defined using fibration

Abstracting away: categories of relations

Idea:

3. monad defined using fibration
eg. [I-lifting, free lifting, ...

Abstracting away: categories of relations

Idea:

4. restrict to concrete objects

Abstracting away: concreteness

(X, Ry, R,) is concreteifeveryx : 1 = XinSetliftsto(l, T, T) = (X, Ry, Ry)

Abstracting away: concreteness

(X, Ry, R,) is concreteifeveryx : 1 = XinSetliftsto(l, T, T) = (X, Ry, Ry)

I X € kisconcreteifeveryx : 1 —- pXin B
lifts to a global elementx : 1 - Xin[E

preserves 1 p

By B

B

61

Abstracting away: concreteness

(X, Ry, R,) is concreteifeveryx : 1 = XinSetliftsto(l, T, T) = (X, Ry, Ry)

I X € kisconcreteifeveryx : 1 —- pXin B
lifts to a global elementx : 1 - Xin[E

preserves 1 p
By (0

B get a subcategory Conc(k) < E

62

Categories of concrete relations or nice enough .)

E s

Jp fibration + CCC-functor

.AU‘A F B
T p—

CCC

Categories of concrete relations or nice enough .)

(g: monad via eg T I-lifting

K—>IE
m Jp

- F CCC
%

Categories of concrete relations or nice enough .)

H restricts the carrier
i e
¢ . =
X R-
COIIC(K) K 12
x_T/
J JP
K expands
the relation M
cCC F CCC

M\
gl cartesian functor

65

Categories of concrete relations or nice enough .)

monad by

abstract 7 / H restricts the carrier
nonsense . A
T N |
N- a1 N-
CODC(K) — K — K
ccc by T
abstract . -
NONSEenNse. = p . .
(X = Ycone = HGX = jY) / K flbratlon + CCC-functor
K expands
the relation M — B

CCC

Y- F
4l cartesian functor

66

Categories of concrete relations or nice enough .)

monad by

abstract 7 / H restricts the carrier
nonsense " A
Y o 1
N- a1 Q-
Conc(K) — K —— E
ccc by T
abstract . i
nonsense. . | |
[X = ¥leone = HGX = jY) . K p
K expands
the relation M —_— B
ccC F CCC
r

keyproperty]ComC :I]_(]X]Y)

mternallses the preservatlon condition

67

Summing up: categories of concrete relations

Motivation

restrict the maps in a semantic model
Aim: o
to those satisfying some property

68

Summing up: categories of concrete relations

idea: Motivation

1. axiomatise relations by fibrations

restrict the maps in a semantic model
Aim: o
to those satisfying some property

2. ccc-structure via structured fibrations [otaring model] ~ | maps satisying

some predicate

3. monad defined using fibration

4. restrict to concrete objects

69

Summing up: categories of concrete relations

Idea:
1.

2.

. monad defined using fibration

Motivation

axiomatise relations by fibrations

restrict the maps in a semantic model
Aim: o
to those satisfying some property

ccc-structure via structured fibrations [otaring model] ~ | maps satisying

some predicate

restrict to concrete objects

. the induced model (CODC(K), HTj, §) ,
 restricts to maps preserving the ‘relations’
~encodedbyp O

70

Summing up: categories of concrete relations

idea: Motivation

1. axiomatise relations by fibrations

restrict the maps in a semantic model
Aim: o
to those satisfying some property

2. ccc-structure via structured fibrations [otaring model] ~ | maps satisying

some predicate

3. monad defined using fibration

4. restrict to concrete objects

. the induced model (CODC(K), HTj, §) '
: - s PR B
restricts to maps preserving the ‘relations’ | ;. fact. encodes

__encodedbyp | preservationofa
logical relation

/1

2: Logical relations

What is a logical relation? ...~ -

A family of relations {R_ | o € Type}
such that:

logical relation R (1) R is a relation on [[o]]

(2) the family is compatible with the
language’s type structure

/3

What is a logical relation? ...~ -

A family of relations {R_ | o € Type}
such that:

logical relation R (1) R is a relation on [[o]]

(2) the family is compatible with the
language’s type structure

M:0) = [[M] €R,

S—

Basic Lemma

useful for relating models, or proving facts about models

74

What is a logical relation? ...~ -

A family of relations {R_ | o € Type}
such that:

logical relation R (1) R is a relation on [[o]]

(2) the family is compatible with the
language’s type structure

fis definable < f 'satisfies' every logical relation

Basic Lemmma*®

useful for relating models, or proving facts about models

75

Logical relations for simply-typed lambda calculus

(the classical story)

R_C [o]l" for each type o, and

Logical relations for simply-typed lambda calculus

(the classical story)

R_C [o]l" for each type o, and (fis..n f) ERDS)
= ((xl,...,xn)ER — (flxl,...,f,/lxn)ES)

e exponentials: R__,_ = (R, D R))

Logical relations for simply-typed lambda calculus

(the classical story)

R_C [o]l" for each type o, and (fis..n f) ERDS)
= ((xl,...,xn)ER — (flxl,...,f,/lxn)ES)

» exponentials: R__,_. = (R, D R))

o terminal object: Ry = T T={(e,....*)}

/8

Logical relations for simply-typed lambda calculus

(the classical story)

R_C [o]l" for each type o, and (fis..n f) ERDS)
= ((xl,...,xn)ER — (flxl,...,f,/lxn)ES)

e exponentials: R__,_. = (R, D R
o terminal object: Ry = T T={(e,....e)]
» products: R — RG1 * R(;2

GIXUQ

((xlayl)a ---9(xn9yn)) € (R*S)
= ((x{,....x,)€Rand (y;,...,y,) €S

79

Logical relations for simply-typed lambda calculus

(the classical story)

R_C [o]l" for each type o, and (fis..n f) ERDS)
= ((xl,...,xn)ER — (flxl,...,f,/lxn)ES)

e exponentials: R__,_. = (R, D R
o terminal object: Ry = T T={(e,....e)]
» products: R — RG1 * R(;2

GIXUZ

((xlayl)a ---9(xn9yn)> € (R*S)
= ((x{,....x,)€Rand (y;,...,y,) €S

what’s a principled extension to monadic structure?

80

What iS a |Ogica| relation? (Hermida, Jacobs, ...)

logical relation

(free model) > M
S[[_]] semantic model
interpretation = CCC

induced by
s : Base -

81

What iS a |Ogica| relation? (Hermida, Jacobs, ...)

. : fibration &
Ioglcal relatlon strict CCC functor

(free model)

S||— :

[[]] semantic model

interpretation = CCC
induced by

s : Base —»

82

What iS a |Ogica| relation? (Hermida, Jacobs, ...)

semantic interpretation 4,

511

: : fibration &
Ioglcal relation strict CCC functor
(free model)
S[[_]] semantic model
interpretation = CCC
induced by

s : Base —»

83

What iS a |Ogica| relation? (Hermida, Jacobs, ...)

semantic interpretation 4,

§ e
. . H]] fibration &
Ioglcal relatlon strict CCC functor

(free model)

S[[]] semantic model
interpretation = CCC
induced by
s : Base »

p(Slle]) = slo] for all
types o

84

What is a logical relation? The canonical example

(Hermida, Jacobs, ...)

(free model) » M
s[—]

Interpretation
iInduced by

s : Base —» A

What is a logical relation? The canonical example

(Hermida, Jacobs, ...)

fibration &
strict CCC functor

(free model) s M
s[—] F
interpretation

iInduced by
s : Base —» A

86

What is a logical relation? The canonical example

(Hermida, Jacobs, ...)

objects: pairs (X, R)
maps: maps preserving the relation

_

fibration &
strict CCC p

functor

(free model) > M » B
s[—] F

Interpretation
iInduced by

s : Base —» A

87

What is a logical relation? The canonical example

(Hermida, Jacobs, ...)

semantic interpretation objects: pairs (X, R)

a maps: maps preserving the relation
sILpll = A, Rﬁ)

K y K
s[-1 -
n p
(free model) > M » B
s[—] F
Interpretation
induced by

s : Base —»

88

What is a logical relation? The canonical example

511

(free model)

s[-]

Interpretation
induced by

s : Base —»

(Hermida, Jacobs, ...)

objects: pairs (X, R)

maps: maps preserving the relation

I

Yo

T

89

|

fibration &
strict CCC functor

F

Slloc — 7] = (S[[G]] = szl R, D RT)

§[[01 X 62]] — (S[[O-l]] X S[[GZ]]’ R(’l * Ro'z)

Logical relations for simply-typed lambda calculus

Some examples:

« SN_ = {[[M]l | M : cis strongly normalising }
. Eq,(D) = {(IMI,IMT) ITEM~M: o}

. Def () = {[M]| | T + M : o)

Kripke relations of varying arity

(fora CCC)

Det,(I') = {IMI | I'EM : 6} C AT, o]

satisfies monotonicity:
[M] € Def (I and "' C A = [[MYX"] € Def (A)

Det _is a presheaf over a category of contexts

91

Kripke relations of varying arity

(fora CCC)

Det,(I') = {IMI | I'EM : 6} C AT, o]

satisfies monotonicity:
[M] € Def (I and "' C A = [[MYX"] € Def (A)

Det,, is a sub-presheaf of /([- 1I. [lo])

92

Kripke relations of varying arity

(fora CCC)

Det,(I') = {IMI | I'EM : 6} C AT, o]

satisfies monotonicity:
[M] € Def (I and "' C A = [[MYX"] € Def (A)

Det,; is a sub-presheaf of /(L — 1. [lo])

R() C (T, X)
fERIT)andT'C A = fo[wkn]] € R(A)

Kripke relations of varying arity ¢oraccc .2
Det (I') = {[M] | T =M : 6} C 41T, [o])
satisfies monotonicity:
[M] € Def T)and ' C A = [[M“*"] € Def (A) Krip > Sub(Con)
Def,, is a sub-presheaf of ([— 1, [[o]) w cod
A Kripke relation of varying arity on X € .% X o M%) O

is a subpresheaf R & Z ([—]|, X)

R() C (T, X)
fERIT)andI'C A = fo[wkn]] € R(A)

What iS a |OgiCa| relation? (Hermida, Jacobs, ...)

semantic interpretation 4,

fibration &
P strict CCC functor

logical relation

(free model) » M

S|l— !
|[]] semantic model
interpretation = CCC

induced by
s : Base —» A

M:0) = [IM] €R,

Basic Lemma

95

What iS a |OgiCa| relation? (Hermida, Jacobs, ...)

semantic interpretation 4,

fibration &
P strict CCC functor

logical relation

(free model) » M

S|l— !
|[]] semantic model
interpretation = CCC

induced by
s : Base —» A

f:s[I'T — sllo] satisfies R < fliftstoamap in E
(f = p(f) for some /)

Basic Lemma

96

What iS a |OgiCa| relation? (Hermida, Jacobs, ...)

semantic interpretation A {
S e
| Ioglcal relation ‘- P strict CCC functor

(free model) » M

S|l— !
|[]] semantic model
interpretation = CCC

induced by
s : Base —» A

f:s[I'T — sllo] satisfies R < fliftstoamap in E
(f = p(f) for some /)

, Proof: f = s[M]| = f=p(sIM])

What iS a |Ogica| relation? (a 2-categorical perspective — WIP)

S[[_]] internal fibration in
D 2-category of CCCs
48 and strict CC-functors
(free model) » M
s[-]
Interpretation
induced by

s : Base —» A

98

What iS a |Ogica| relation? (a 2-categorical perspective — WIP)

§[—] internal fibration in
2-category of models
p and semantics-
B preserving functors
(free model) > M
s[—]
interpretation
induced by

s : Base —» A

99

What iS a |Ogica| relation? (a 2-categorical perspective — WIP)

T
A
44

§[—] internal fibration in
2-category of models

logical relation

and semantics-
preserving functors

s[—]
Interpretation
induced by

s : Base —» A

p

(free model) > M
0-
I

f:s[I'T — slo] satisfies R < fliftstoamap in E
(f = p(f) for some f)

- fis definable =— f satisfies R

100

What is a logical relation for 4 ,?

I
AL
44
§[—] internal fibration in
2-category of models
b and semantics-
B preserving functors
(free model) » M
s[—] 0-
T

Interpretation
induced by

s : Base —» A

101

What is a logical relation for 4 ,?

T
A

kA

§[—] internal fibration in
2-category of models

logical relation!

p and semantics-
B preserving functors

(free model) > M
s[—]

Interpretation
induced by

s : Base —» A

-
&

Fibration p such that

 p strictly preserves cc-structure

logical relation

« p commutes withthe monads: pe 1l =1op, ...

102

What is a logical relation for 4 ,?

semantic interpretation

SIAD = (TN, Ry)

objects: pairs (X, R)
maps: maps preserving the relation

K » K

511 -

fibration &
T strict CCC functor
1
(free model) » M
s|—] o F
interpretation I

induced by
s : Base -

103

What is a logical relation for 4 ,?
eg. TT-lifting, free lifting, ...

objects: pairs (X, R)

maps: maps preserving the relation

SLAD = (sIA Rﬁ)

511

T@K
_

fibration &
T strict CCC functor

Y

(free model) » M
s[—] Y-
interpretation T

induced by
s : Base — A

F

104

What is a logical relation for 4 ,?

pplelpF=To Mo =ij[pl=To MVE laloWilol = 1i[o]g) eg. TT -lifting, free lifting, ...
objects: pairs (X, R)

maps: maps preserving the relation

SLAD = (sIA Rﬁ)

TéK_l y K

fibration &
T strict CCC functor

Y

(free model) » M
s[—] Y-
interpretation T

induced by
s : Base — A

F

S[Toll = (Tslel, TR,)

105

Slo — 7] = (S[[G]] = sllzll, R, D RT)

§lloy X 0,1l = (sl X s[o,], R, % R,,)

Some examples:

« SN_= {[IM]l | M : o is strongly normalising }

. qu(r) — {([[M]], M) ‘ I'-FM~M: 6} for a ‘suitable’

equational theory

. Def. (D) = {[M] |T + M : o)

note the parametrisation

by contexts difficulty = choice of monad T

T T-lifting very useful for this (cf. Lindley-Stark, biorthogonality,...)

106

What is a logical relation for 1.?

slle — t]] = slla]l = T(s|lz]])
sllo; X o5l = sllo | X sllo, |l

What is a logical relation for 1.?

o =7l = <S[[G]] = szl Ko 2 RT) sllo — 7]l = sllall = T(s[[z])
Sllo; X 0,]] = (S[[Gl]] X sllo,]l, R, * Rdz) slloy X oyl = slloy Il X sllo,]l

What is a logical relation for 1.?

for R C (T]o])",

Restrict to values: |
| R™ ={(x,....x) | qx(,...,nx,) € R} C [o]"

Slloc — 7] = (S[[G]] = TS[[T]],R;aIS D

Sllo; X 0,]] = (S[[Gl]] X sllo]l, Rgfls * R};‘IS)

109

What is a logical relation for 1.?

for R C (T]o])",

Restrict to values: |
| R™ ={(x,....x) | qx(,...,nx,) € R} C [o]"

Slloc — 7] = (S[[G]] = TS[[T]],R;aIS D

Sllo; X 0,]] = (S[[Gl]] X sllo]l, Rgfls * Rgf“)

110

What is a logical relation for 1.?

for R C (T o],

Restrict to values: |
| R™ ={(x,....x) | qx(,...,nx,) € R} C [o]"

Converse to the Basic Lemma

Every morphism of models defines a logical relation:

(free model)

o

§C s[-]

Converse to the Basic Lemma

Every morphism of models defines a logical relation:
F () := {Fh | h € G(c[T], cl[o]))

(free model)

o

Converse to the Basic Lemma

Every morphism of models defines a logical relation:

F (D) :={Fh|heBCllclel}

(free model)
/ N‘—) (sllo]l, F
»Krips T
Cr (FC F)

/ monad given by TT -lifting

cf. the ldentity Extension Lemma

NS

114

Converse to the Basic Lemma

Every morphism of models defines a logical relation:

3‘70_(]—') — {Fh ‘ h & C[g(c[[]—‘]], C[[g]])} take € the subcategory of . with:

« objects: s[[c]] for 6 € Type

(free model) * maps: definable maps

/ \(;H (sllell, F = Def is logical
»Krip & 7
Cr— (FC F)
X /
M

-
I

115

Converse to the Basic Lemma

Every morphism of models defines a hungry logical relation:
F) :=1{Fh|he$¥(Clll,clecl)}

. f; o]l — [[7]] satisfies ¥ — fe f}/wrf(x o) take € the subcategory of . with:
« objects: 5|l o] for o € Type

(free model) » maps: definable maps

/ \"H i = Def is logical
»Krips T
C (FC F)
R /
M

@\
T 116

Converse to the Basic Lemma

Every morphism of models defines a hungry logical relation:
F) := {Fh | h € B(c[T], o)}
e f:[lo]l = 7] satisfies F — f&€ F _(x: o)

take € the subcategory of . with:

« objects: 5| o] for o € Type

e maps: definable maps
(free model) P P

Ly = Def is logical
/ \ < [lo]l = [[z]] satisfies Def — fis definable
»Krips 7T
Cr (FC F)
X 7
M

M\
T 117

Converse to the Basic Lemma

Every morphism of models defines a hungry logical relation:
F) := {Fh | h € B(c[T], o)}
e f:[lo]l = 7] satisfies F — f&€ F _(x: o)

(free model)

/ N—) (sllo]l, #
»Krips T
C (FC F)
R /
M

-
I

Logical relations and categories of concrete relations

119

Logical relations and categories of concrete relations

Conc(E) j + E

M < (free model)
M\
I

120

Logical relations and categories of concrete relations

Conc(E) j + E

logical relation

(free model)

s[-]

NS < 4

121

Logical relations and categories of concrete relations

Category of concrete relations
~ model with maps satisfying a logical relation

Hij I
QA g N-

Conc(E) j + E

logical relation

(free model)

s[-]

NS < 4

122

Logical relations and categories of concrete relations

Category of concrete relations
~ model with maps satisfying a logical relation

H ;
HYA?/ /_\ .
Q- g N-
Conc(E) j + E
\—7/
logical relation
K
| p
If every R_is concrete:
model ./ M -+ (free model)
model Conc(E) of - s[-]
T A o
maps satisfying R I

logical relation R

123

Summing up: logical relations

1. Logical relations can be defined via internal fibrations (at least for STLC, 4,,,and /)

2. 2-categorical perspective = a simple characterisation of definability

3. Conc(E) is a model with maps satisfying some logical relation

not always obvious what this is from the start!

124

3: Models with every map definable

(‘full completeness’)

What doesn’t work

Logical relations and categories of concrete relations take this to be Def

Every logical relation determines a category
of concrete relations

HTj E f
E . =
Conc(E) < j E
s

K

logical relation

T @ M- (free model)

126

What doesn’t work

Logical relations and categories of concrete relations take this to be Def

Every logical relation determines a category

of concrete relations v
ol = vervy map in
o /_T\ (Q, every map
Conc(E \TJ/ COIIC(_)
. logical relation pr aserves D ef

T @ M- (free model)

127

What doesn’t work

Logical relations and categories of concrete relations take this to be Def

Every logical relation determines a category
of concrete relations g

HTj H 7 .
Q /T\ Q every map in
COIIC(E)<) E COnc(_)

~— oreserves Def

K
I8 (s M ¢ (free model) |
o, every map in

Conc(lb) is

definable

logical relation

128

What doesn’t work

Logical relations and categories of concrete relations take this to be Def

Every logical relation determines a category
of concrete relations g

HTj H

y m & every map in

s Conc()
preserves Def

T @ M- (free model) |
o, every map in

Conc(lb) is

definable

logical relation

Def for Conc(EE) is not the same as Deft for /!

129

The Strategy (cf. O’'Hearn & Riecke)

Define a category of concrete relations OHR(.Z)
with objects (X, {R; | i € I}) such that

130

The Strategy (cf. O’Hearn & Riecke)

Define a category of concrete relations OHR(.Z)
with objects (X, {R; | i € I}) such that

for any logical relation {L_ | 6 € Type} there exists i, s.t.

eif [ol = (....{R7| i €I}),
=L, then RY = L

O

relation at index i,
for interpretation of o

for all o € Type

131

The Strategy (cf. O’Hearn & Riecke)

Define a category of concrete relations OHR(.Z)
with objects (X, {R; | i € I}) such that

for any logical relation {L_ | 6 € Type} there exists i, s.t.

eif [ol = (....{R7| i €I}),
=L, then RY = L

O

relation at index i,
for interpretation of o

for all o € Type

Then f: [T']] — HTj[[¢] in OHR(.#)

< fisamap in ./ preserving every relation R,

132

The Strategy (cf. O’Hearn & Riecke)

Define a category of concrete relations OHR(.Z)
with objects (X, {R; | i € I}) such that

for any logical relation {L_ | 6 € Type} there exists i, s.t.

eif [ol = (....{R7| i €I}),
=L, then RY = L

O

relation at index i,
for interpretation of o

for all o € Type

Then f: [T']] — HTj[[¢] in OHR(.#)
< fisamap in ./ preserving every relation R,

—> fis amap in ./ satisfying L

133

The Strategy (cf. O’'Hearn & Riecke)

Define a category of concrete relations OHR(.Z)
with objects (X, {R; | i € I}) such that

for any logical relation {L_ | 6 € Type} there exists i, s.t.

eif [ol = (....{R7| i €I}),

relation at index i, \ .
for interpretation of 6/ ° then Rio = L,
for all o € Type
Then f: [T] = HTj[[c]] in OHR(.) then:

. . . . tisfies every logical
< fisamap in 4 preserving every relation R. fsa
J P P J y ! relation, so is definable

—> fis amap in ./ satisfying L

134

The Strategy (cf. O’Hearn & Riecke)

How do we choose / and || — [|? The intuition:

7 set of logical relations | |
= over OHR(.2) | | — || looks up the required relation

135

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

define OHR ()

136

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

define OHR (/) choose [so every logical
relation over OHR () appears

137

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

define OHR (/) choose [so every logical
relation over OHR () appears

define logical relation /

over OHR ()

138

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

define OHR (/) choose [so every logical
relation over OHR () appears

\ define logical relation /

over OHR ()

139

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

choose [so every possible
relation over ./ appears

define OHR ()

140

How do we choose / and || — [|? The intuition:

; set of logical relations | |
= over OHR(.27) | | — || looks up the required relation

Circular dependencies!

choose [so every possible
relation over ./ appears

identify logical relations over /

OHR(.Z) amongst relations
over

define OHR ()

141

The OHR construction . otearn & Riecke)

Choose [as above, then construct the following category of concrete relations:

HT] /\g
J » IC

OHR(M) : > [1,c; Sub(Con)
\ T/
K
T |1, cod
» [1ic; Con

142

Summary

o Categories of concrete relations are a flexible way to ‘cut down’ models

* Viewed from a general enough perspective, these restrict to
maps satisfying a logical relation

» Basic properties of logical relations follow from abstract nonsense

 Combining this theory ~ can construct fully complete models

Summary

o Categories of concrete relations are a flexible way to ‘cut down’ models

* Viewed from a general enough perspective, these restrict to
maps satisfying a logical relation

» Basic properties of logical relations follow from abstract nonsense

 Combining this theory ~ can construct fully complete models

Future work

* Does the ‘internal fibration’ view give the right notion in other cases”?
 Can the Basic Lemma etc be phrased completely abstractly?

* Universal property for the OHR construction?

