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Motivation
restrict the maps in a semantic model 
to those satisfying some propertyAim:
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Motivation
restrict the maps in a semantic model 
to those satisfying some property

System F: parametric maps 
PCF: definable maps

(modulo approximation)

use fibrations, logical relations, and glueing 

for effectful CBV languages  

starting model
model with only 
maps satisfying 
some predicate↝

Aim:

eg

Strategy:

for effectful CBV languages  
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Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)


2. Logical relations for effectful languages


3. Full completeness
 = building a model in which every map is definable
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Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)


2. Logical relations for effectful languages


3. Full completeness
 = building a model in which every map is definable

related to full abstraction and completeness
exact link = work in progress!
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Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)


2. Logical relations for effectful languages


3. Full completeness
conjecture extension to an 

extrinsic, 2-categorical story 

 = building a model in which every map is definable

+

related to full abstraction and completeness
exact link = work in progress!
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Syntax and semantics of λml
= Moggi’s monadic metalanguage
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Syntax of λml

types: β ∈ Base ∣ σ1 × σ2 ∣ σ → τ

terms:  x ∣ ξ ∈ Prim ∣ op ∈ EfOp
∣ M N ∣ λx . M ∣ π1(M) ∣ π2(M) ∣ ⟨M, M′ ⟩ ∣ ()

= Moggi’s monadic metalanguage
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Syntax of λml

types: β ∈ Base ∣ σ1 × σ2 ∣ σ → τ ∣ Tσ

terms:  x ∣ ξ ∈ Prim ∣ op ∈ EfOp
∣ M N ∣ λx . M ∣ π1(M) ∣ π2(M) ∣ ⟨M, M′ ⟩ ∣ ()
∣ return(M) ∣ let x = N in M

= Moggi’s monadic metalanguage
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Semantics of λml model = (ℳ, T, s)
CCC

strong monad

interpretation of 
base types and 

constants
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Semantics of λml

Interpretation of types: 


•  as for simply-typed lambda calculus


•
s[[σ]]
s[[Tσ]] = T(s[[σ]])

model = (ℳ, T, s)
CCC

strong monad

interpretation of 
base types and 

constants
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Semantics of λml

Interpretation of types: 


•  as for simply-typed lambda calculus


•
s[[σ]]
s[[Tσ]] = T(s[[σ]])

Interpretation of terms: 


•  as for simply-typed lambda calculus


• 


•  interpreted using monadic bind

s[[M : σ]]
s[[return(M) : Tσ]] = η ∘ s[[σ]]
s[[let…]]

model = (ℳ, T, s)
CCC

strong monad

interpretation of 
base types and 

constants
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1: Concrete relations (by example)

16

a flexible method for restricting models



base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

syntax:

Example: read-only state (Set, T, s)
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base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

base category: Set
monad:  reader T(X) = (2 ⇒ X)

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

syntax:

semantics:

Example: read-only state (Set, T, s)



base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

interpretation of base types and constants:

s(bool) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad:  reader T(X) = (2 ⇒ X) s(bool) = 2 = { ⊤ , ⊥ }

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

syntax:

semantics:

Example: read-only state (Set, T, s)



interpretation of base types and constants:

, etcs(bool) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad:  reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2

20

(Matache & Staton)

κ(g) = {λi . ⊤  if g(∙) = λi . ⊤
λi . ⊥  else 



 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2
behaves in a way 
no program can!

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad:  reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF
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κ(g) = {λi . ⊤  if g(∙) = λi . ⊤
λi . ⊥  else 



 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2
behaves in a way 
no program can!

distinguishes contextually-equivalent programs:
∃M, M′ . (M ≃ctx M′  but  [[M]](κ) ≠ [[M′ ]](κ))

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])
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monad:  reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF

full abstraction 
fails
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(Matache & Staton)

κ(g) = {λi . ⊤  if g(∙) = λi . ⊤
λi . ⊥  else 



 has too many maps(Set, T, s)

κ(g) = {λi . ⊤  if g(∙) = λi . ⊤
λi . ⊥  else 

κ : (1 ⇒ T2) → T2
behaves in a way 
no program can!

distinguishes contextually-equivalent programs:
∃M, M′ . (M ≃ctx M′  but  [[M]](κ) ≠ [[M′ ]](κ))

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad:  reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type                   
= set maps 

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF

full abstraction 
fails

 is a bad map: want to remove itκ
23

(Matache & Staton)



Idea: restrict to maps preserving relations
Define a category  of ‘predicates’𝕃
• objects: 


 with 


• maps : 

maps  preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y
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Idea: restrict to maps preserving relations
Define a CCC  of ‘predicates’𝕃 • objects: 


• maps : 

maps  preserving the 
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(X, R0, R1)
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Idea: restrict to maps preserving relations
Define a CCC  of ‘predicates’𝕃

• exponentials: 


(X, R0, R1) ⇒ (Y, S0, S1) := (X ⇒ Y, R0 ⊃ S0, R1 ⊃ S1)

• objects: 


• maps : 

maps  preserving the 
relation

(X, R0, R1)
(X, R0, R1) → (Y, S0, S1)

f : X → Y

( f, g) ∈ (Ri ⊃ Si) ⟺ ((x, x′ ) Ri ⟹ ( f x, g x′ ) ∈ Si)
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Idea: restrict to maps preserving relations
Define a CCC  of ‘predicates’𝕃

• exponentials: 




• terminal object: 

 


• products: 


(X, R0, R1) ⇒ (Y, S0, S1) := (X ⇒ Y, R0 ⊃ S0, R1 ⊃ S1)
(1, ⊤ , ⊤ )

(X, R0, R1) × (Y, S0, S1) = (X × Y, R0 ⋆ S0, R1 ⋆ S1)

• objects: 


• maps : 

maps  preserving the 
relation

(X, R0, R1)
(X, R0, R1) → (Y, S0, S1)

f : X → Y

( f, g) ∈ (Ri ⊃ Si) ⟺ ((x, x′ ) Ri ⟹ ( f x, g x′ ) ∈ Si)
⊤ = {( ∙ , ∙ )}

((x1, y1), (x2, y2)) ∈ (Ri ⋆ Si) ⟺ (x1, x2) ∈ Ri and (y1, y2) ∈ Si
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• objects: 

 with 


• maps : 

maps  preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

Idea: restrict to maps preserving relations
Define a model  of ‘predicates’(𝕃, ̂T, ̂s)
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Idea: restrict to maps preserving relations
Define a model  of ‘predicates’(𝕃, ̂T, ̂s)
• objects: 


 with 


• maps : 

maps  preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• interpretation:

̂s(bool) = (2,{(0,0), (1,1)}, {(0,0), (1,1)})
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Idea: restrict to maps preserving relations
Define a model  of ‘predicates’(𝕃, ̂T, ̂s)
• objects: 


 with 


• maps : 

maps  preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• monad:

̂T(X, R0, R1) = (TX, ( ̂TR)0, ( ̂TR)1)

• interpretation:

̂s(bool) = (2,{( ⊥ , ⊥ ), ( ⊤ , ⊤ )}, {( ⊥ , ⊥ ), ( ⊤ , ⊤ )})

(h, h′ ) ∈ ( ̂TR)i ⟺ (h i, h′ i) ∈ Ri30



Idea: restrict to maps preserving relations
Define a model  of ‘predicates’(𝕃, ̂T, ̂s)
• objects: 


 with 


• maps : 

maps  preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• monad:

̂T(X, R0, R1) = (TX, ( ̂TR)0, ( ̂TR)1)

 is not a map




in  

κ
κ : (1 ⇒ ̂T ̂s[[bool]]) → ̂T ̂s[[bool]]

𝕃

(h, h′ ) ∈ ( ̂TR)i ⟺ (h i, h′ i) ∈ Ri31

• interpretation:

̂s(bool) = (2,{( ⊥ , ⊥ ), ( ⊤ , ⊤ )}, {( ⊥ , ⊥ ), ( ⊤ , ⊤ )})



Idea: restrict to maps preserving relations
…have a model  of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models : 

preserves


ccc-structure

monads

semantic interpretation 

π : 𝕃 → Set

32

̂T
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Idea: restrict to maps preserving relations
…have a model  of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models : 

preserves


ccc-structure

monads

semantic interpretation 


• new model refines the original one:     

π : 𝕃 → Set

𝕃( ̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])
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Idea: restrict to maps preserving relations
…have a model  of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models : 

preserves


ccc-structure

monads

semantic interpretation 


• new model refines the original one:     

π : 𝕃 → Set

𝕃( ̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])

problem: κ ∈ s[[(1 → Tbool) → Tbool]]

previous problem, internalised

⟹ κ ∈ (carrier of  ̂s[[(1 → Tbool) → Tbool]])
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Idea: restrict to maps preserving relations
…have a model  of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models : 

preserves


ccc-structure

monads

semantic interpretation 


• new model refines the original one:     

π : 𝕃 → Set

𝕃( ̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])

problem: κ ∈ s[[(1 → Tbool) → Tbool]]

previous problem, internalised

 removes  from the hom-set, but not the function space𝕃 κ
can still distinguish contextually-equivalent terms!

35

⟹ κ ∈ (carrier of  ̂s[[(1 → Tbool) → Tbool]])



Concreteness: removing  from the function spaceκ
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Concreteness: removing  from the function spaceκ

 does not correspond to a global element:


there is no  in  

such that 


κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ
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Concreteness: removing  from the function spaceκ

 does not correspond to a global element:


there is no  in  

such that 


so: 


κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ

restrict to objects  in which every  

corresponds to a global element in 

(X, R0, R1) x ∈ X
𝕃



Concreteness: removing  from the function spaceκ

 does not correspond to a global element:


there is no  in  

such that 


so: 


κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ

 is concrete if every  in  lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤ ) → (X, R0, R1)
x ∈ X ⟹ (x, x) ∈ Ri (i = 1,2)

restrict to objects  in which every  

corresponds to a global element in 

(X, R0, R1) x ∈ X
𝕃
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The subcategory of concrete objects

interpretation of  etc 
restricts to 

bool
Conc(𝕃)
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The subcategory of concrete objects

interpretation of  etc 
restricts to 

bool
Conc(𝕃)
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The subcategory of concrete objects

interpretation of  etc 
restricts to 

bool
Conc(𝕃)

 restricts  to 
those  such that 

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands : 
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

42
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The subcategory of concrete objects

ccc by 
abstract 

nonsense:

monad by 
abstract 

nonsense

interpretation of  etc 
restricts to 

bool
Conc(𝕃)

 restricts  to 
those  such that 

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands : 
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[ − ⇒ = ]Conc = H(j( − ) ⇒ j( = ))

43

H ̂Tj ̂T
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The subcategory of concrete objects

ccc by 
abstract 

nonsense:

monad by 
abstract 

nonsense

interpretation of  etc 
restricts to 

bool
Conc(𝕃)

key property: [(X, …) ⇒ (Y, …)]Conc
≅ 𝕃(j(X, …), j(Y, …)) ⊆ Set(X, Y)

 restricts  to 
those  such that 

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands : 
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[ − ⇒ = ]Conc = H(j( − ) ⇒ j( = ))
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The subcategory of concrete objects

ccc by 
abstract 

nonsense:

monad by 
abstract 

nonsense

interpretation of  etc 
restricts to 

bool
Conc(𝕃)

internalises the preservation condition  cannot be in function space!κ

 restricts  to 
those  such that 

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands : 
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[ − ⇒ = ]Conc = H(j( − ) ⇒ j( = ))

45

key property: [(X, …) ⇒ (Y, …)]Conc
≅ 𝕃(j(X, …), j(Y, …)) ⊆ Set(X, Y)

̂T

T

H ̂Tj



Summing up

 in hom-sets and function spaces κ

46

T



Summing up

 in hom-sets and function spaces κ

 in function spaces κ
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Summing up

 in hom-sets and function spaces κ

 in function spaces κ
 gone! κ
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Abstracting away: categories of concrete relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
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Abstracting away: categories of relations

fibration
fibration

objects:  such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps:  such that ( f, ̂f ) in ℳ × 𝔼 Ff = p( ̂f )

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations
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fibration
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Abstracting away: categories of relations

fibration
fibration

objects:  such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps:  such that ( f, ̂f ) in ℳ × 𝔼 Ff = p( ̂f )

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations
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Abstracting away: categories of relations

subobject fibration
fibration

objects:  such that (X, R) ∈ Set × Sub(Set) R ↪ X2

maps: f in Set s.t. f preserves the subobject

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations

53

eg objects:  such that 

maps: maps in  respecting the subjects

(E, R) R ↪ E
Set

(E, R) ↦ E



Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
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Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
fibration

fibration

objects:  such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps:  such that ( f, ̂f ) in ℳ × 𝔼 Ff = p( ̂f )

‘change-of-base’

(X, R) ↦ X
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Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
fibration

fibration

objects:  such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps:  such that ( f, ̂f ) in ℳ × 𝔼 Ff = p( ̂f )

‘change-of-base’

(X, R) ↦ X

if ,  and  are CCCs,  strictly preserves 
CCC-structure, and  is cartesian, then:

𝔼 𝔹 ℳ p
F

 is a CCC, and  strictly preserves 
CCC-structure
𝕂 π

Fact: 
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Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
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Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   eg. -lifting, free lifting, … ⊤⊤
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Abstracting away: categories of relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
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Abstracting away: concreteness
 is concrete if every  in  lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤ ) → (X, R0, R1)
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Abstracting away: concreteness

 is concrete if every  in  
lifts to a global element  in 
X ∈ 𝔼 x : 1 → pX 𝔹

̂x : 1 → X 𝔼

 is concrete if every  in  lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤ ) → (X, R0, R1)

preserves 1
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Abstracting away: concreteness

 is concrete if every  in  
lifts to a global element  in 
X ∈ 𝔼 x : 1 → pX 𝔹

̂x : 1 → X 𝔼

 is concrete if every  in  lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤ ) → (X, R0, R1)

preserves 1

62

get a subcategory Conc(𝔼) ↪ 𝔼



Categories of concrete relations (for nice enough )ℳ

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

63

T



fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

CCC
monad via eg -lifting⊤⊤
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Categories of concrete relations (for nice enough )ℳ

̂T

T



 restricts the carrierH

 expands 
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤
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Categories of concrete relations (for nice enough )ℳ

̂T

T



ccc by 
abstract 

nonsense:

monad by 
abstract 

nonsense

[X ⇒ Y]Conc = H( jX ⇒ jY )

 restricts the carrierH

 expands 
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤

66

Categories of concrete relations (for nice enough )ℳ

̂T

T

H ̂Tj



ccc by 
abstract 

nonsense:

monad by 
abstract 

nonsense

[X ⇒ Y]Conc = H( jX ⇒ jY )

key property: [X ⇒ Y]Conc ≅ 𝕃( jX, jY)
internalises the preservation condition

 restricts the carrierH

 expands 
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤
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Categories of concrete relations (for nice enough )ℳ

̂T

T

H ̂Tj



Summing up: categories of concrete relations
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Summing up: categories of concrete relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   
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Summing up: categories of concrete relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   

the induced model  
restricts to maps preserving the ‘relations’ 

encoded by 

(Conc(𝕂), H ̂Tj, ̂s)
p
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Summing up: categories of concrete relations
idea:  

1. axiomatise relations by fibrations


2. ccc-structure via structured fibrations


3. monad defined using fibration


4. restrict to concrete objects   

the induced model  
restricts to maps preserving the ‘relations’ 

encoded by 

(Conc(𝕂), H ̂Tj, ̂s)
p

in fact, encodes 
preservation of a 
logical relation
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2: Logical relations
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What is a logical relation?

logical relation  R

A family of relations  
such that:


(1)  is a relation on 


(2) the family is compatible with the 
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

the classical story: 
Plotkin + many others

=
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What is a logical relation?

logical relation  R

A family of relations  
such that:


(1)  is a relation on 


(2) the family is compatible with the 
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

Basic Lemma  (M : σ) ⟹ [[M]] ∈ Rσ

useful for relating models, or proving facts about models

the classical story: 
Plotkin + many others

=

=
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What is a logical relation?

logical relation  R

A family of relations  
such that:


(1)  is a relation on 


(2) the family is compatible with the 
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

Basic Lemma*

useful for relating models, or proving facts about models

the classical story: 
Plotkin + many others

=

= f is definable ⟺ f 'satisfies' every logical relation
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Logical relations for simply-typed lambda calculus
(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
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Logical relations for simply-typed lambda calculus

• exponentials: Rσ→τ = (Rσ ⊃ Rτ)

( f1, …, fn) ∈ (R ⊃ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ ( f1 x1, …, fn xn) ∈ S)
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Logical relations for simply-typed lambda calculus

• exponentials: 


• terminal object:  


Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

( f1, …, fn) ∈ (R ⊃ S)

⊤ = {( ∙ , …, ∙ )}

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ ( f1 x1, …, fn xn) ∈ S)
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Logical relations for simply-typed lambda calculus

• exponentials: 


• terminal object:  


• products: 

Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

Rσ1×σ2
= Rσ1

⋆ Rσ2

( f1, …, fn) ∈ (R ⊃ S)

⊤ = {( ∙ , …, ∙ )}

((x1, y1), …, (xn, yn)) ∈ (R ⋆ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ ( f1 x1, …, fn xn) ∈ S)

⟺ (x1, …, xn) ∈ R and (y1, …, yn) ∈ S
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Logical relations for simply-typed lambda calculus

• exponentials: 


• terminal object:  


• products: 

Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

Rσ1×σ2
= Rσ1

⋆ Rσ2

( f1, …, fn) ∈ (R ⊃ S)

⊤ = {( ∙ , …, ∙ )}

((x1, y1), …, (xn, yn)) ∈ (R ⋆ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ ( f1 x1, …, fn xn) ∈ S)

⟺ (x1, …, xn) ∈ R and (y1, …, yn) ∈ S

what’s a principled extension to monadic structure?
80



What is a logical relation?

logical relation 

(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 

 for all 
types 

p( ̂s[[σ]]) = s[[σ]]
σ

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ
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What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 
CCC

fibration &  
strict CCC functor

cartesian functorinterpretation 
induced by 

s : Base → ℳ
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What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 
CCC

fibration &  
strict CCC functor

cartesian functorinterpretation 
induced by 

s : Base → ℳ
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What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 

fibration &  
strict CCC functor

cartesian functorinterpretation 
induced by 

s : Base → ℳ

fibration &  
strict CCC 

functor

objects: pairs 

maps: maps preserving the relation

(X, R)CCC
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CCC

fibration &  
strict CCC functor

CCC

semantic interpretation 

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation 
induced by 

s : Base → ℳ

objects: pairs 

maps: maps preserving the relation

(X, R)CCC

What is a logical relation? The canonical example
(Hermida, Jacobs, …)
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CCC

fibration &  
strict CCC functor

CCC


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation 

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation 
induced by 

s : Base → ℳ

objects: pairs 

maps: maps preserving the relation

(X, R)CCC

interpretation 
induced by 

s : Base → ℳ

What is a logical relation? The canonical example
(Hermida, Jacobs, …)
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Some examples:


•  


• 


•

SNσ = {[[M]] ∣ M : σ is strongly normalising}

Eqσ(Γ) = {([[M]], [[M′ ]]) ∣ Γ ⊢ M ≃ M′ : σ}
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ}

note the parametrisation 
by contexts

for a ‘suitable’ 
equational theory 

Logical relations for simply-typed lambda calculus
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Kripke relations of varying arity
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a presheaf over a category of contextsDefσ

(for a CCC )ℳ
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Kripke relations of varying arity
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[ − ]], [[σ]])

(for a CCC )ℳ
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Kripke relations of varying arity

A Kripke relation of varying arity on  

is a subpresheaf  

X ∈ ℳ
R ↪ ℳ([[ − ]], X)

Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[ − ]], [[σ]])

(for a CCC )ℳ

f ∈ R(Γ) and Γ ⊆ Δ ⟹ f ∘ [[wkn]] ∈ R(Δ)
R(Γ) ⊆ ℳ([[Γ]], X)
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Kripke relations of varying arity

A Kripke relation of varying arity on  

is a subpresheaf  

X ∈ ℳ
R ↪ ℳ([[ − ]], X)

Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[ − ]], [[σ]])

(for a CCC )ℳ

f ∈ R(Γ) and Γ ⊆ Δ ⟹ f ∘ [[wkn]] ∈ R(Δ)
R(Γ) ⊆ ℳ([[Γ]], X)
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &  
strict CCC functor

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ

Basic Lemma  (M : σ) ⟹ [[M]] ∈ Rσ
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &  
strict CCC functor

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ

Basic Lemma
f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼

 for some )( f = p( ̂f ) ̂f
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What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &  
strict CCC functor

semantic interpretation 

semantic model 
= CCCinterpretation 

induced by 
s : Base → ℳ

Basic Lemma
f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼

 f is definable  ⟹ f satisfies R
 for some )( f = p( ̂f ) ̂f

Proof: f = s[[M]] ⟹ f = p( ̂s[[M]])97



What is a logical relation?

logical relation
internal fibration in      
2-category of CCCs 

and strict CC-functors 

semantic interpretation 

semantic model 
interpretation 
induced by 

s : Base → ℳ

(a 2-categorical perspective — WIP)
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What is a logical relation?

logical relation
internal fibration in      

2-category of models 
and semantics-

preserving functors  

semantic interpretation 

semantic model 
interpretation 
induced by 

s : Base → ℳ

(a 2-categorical perspective — WIP)
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What is a logical relation?

logical relation
internal fibration in      

2-category of models 
and semantics-

preserving functors  

semantic interpretation 

interpretation 
induced by 

s : Base → ℳ

semantic model 

Basic Lemma
 f is definable  ⟹ f satisfies R

 for some )( f = p( ̂f ) ̂f

(a 2-categorical perspective — WIP)
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̂T

T

f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼



internal fibration in      
2-category of models 

and semantics-
preserving functors  

semantic interpretation 

interpretation 
induced by 

s : Base → ℳ

semantic model 

What is a logical relation for ?λml

logical relation

101

̂T
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What is a logical relation for ?λml

logical relation
internal fibration in      

2-category of models 
and semantics-

preserving functors  

semantic interpretation 

semantic model 
interpretation 
induced by 

s : Base → ℳ

Fibration  such that 


•  strictly preserves cc-structure


•  commutes with the monads: 

p
p
p p ∘ ̂T = T ∘ p, …

logical relation

102
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What is a logical relation for ?λml

CCC

fibration &  
strict CCC functor

CCC


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation 

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation 
induced by 

s : Base → ℳ

objects: pairs 

maps: maps preserving the relation

(X, R)CCC

interpretation 
induced by 

s : Base → ℳ
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What is a logical relation for ?λml

CCC

fibration &  
strict CCC functor

CCC


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation 

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation 
induced by 

s : Base → ℳ

objects: pairs 

maps: maps preserving the relation

(X, R)CCC

interpretation 
induced by 

s : Base → ℳ

monad defined using fibration eg. -lifting, free lifting, …⊤⊤
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What is a logical relation for ?λml

CCC

fibration &  
strict CCC functor

CCC


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation 

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation 
induced by 

s : Base → ℳ

objects: pairs 

maps: maps preserving the relation

(X, R)CCC

interpretation 
induced by 

s : Base → ℳ

monad defined using fibration

̂s[[Tσ]] = (Ts[[σ]], ̂TRσ)

eg. -lifting, free lifting, …⊤⊤
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̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

Some examples:


•  


• 


•

SNσ = {[[M]] ∣ M : σ is strongly normalising}

Eqσ(Γ) = {([[M]], [[M′ ]]) ∣ Γ ⊢ M ≃ M′ : σ}
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ}

note the parametrisation 
by contexts

for a ‘suitable’ 
equational theory 

̂s[[Tσ]] = (Ts[[σ]], ̂TRσ)

difficulty = choice of monad ̂T
-lifting very useful for this (cf. Lindley-Stark, biorthogonality,…)⊤⊤
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What is a logical relation for ?λc

s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])
s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]
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What is a logical relation for ?λc


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]
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What is a logical relation for ?λc


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n


̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2 )
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What is a logical relation for ?λc


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n


̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2 )

̂s[[σ]] = (s[[σ]], Rvals
σ )
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What is a logical relation for ?λc


̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n


̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2 )

̂T(s[[σ]], Rvals
σ ) = (Ts[[σ]], Rσ)


̂s[[σ]] = (s[[σ]], Rvals
σ )

T ̂s[[σ]] = (Ts[[σ]], Rσ)
111



Converse to the Basic Lemma
Every morphism of models defines a logical relation:
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Every morphism of models defines a logical relation:


ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

113

Converse to the Basic Lemma
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Every morphism of models defines a logical relation:


ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤
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Every morphism of models defines a logical relation:


ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

take  the subcategory of  with: 


• objects: 


• maps: definable maps


  is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

monad given by -lifting⊤⊤
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Every morphism of models defines a hungry logical relation:


• 


•  

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ) take  the subcategory of  with: 


• objects: 


• maps: definable maps


  is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def
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Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤
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Every morphism of models defines a hungry logical relation:


• 


•  

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ)

take  the subcategory of  with: 


• objects: 


• maps: definable maps


  is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

f : [[σ]] → [[τ]] satisfies Def ⟹ f is definable
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Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤
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Every morphism of models defines a hungry logical relation:


• 


•  

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ)

take  the subcategory of  with: 


• objects: 


• maps: definable maps


  is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

f : [[σ]] → [[τ]] satisfies Def ⟹ f is definable

 satisfies every 
logical relation   is definable

f : [[σ]] → [[τ]]
⟺ f

Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤
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Logical relations and categories of concrete relations
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Logical relations and categories of concrete relations
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Logical relations and categories of concrete relations
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Logical relations and categories of concrete relations
Category of concrete relations                          

 model with maps satisfying a logical relation≈
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Logical relations and categories of concrete relations

model  of 
maps satisfying 

Conc(𝔼)
R

model ℳ

logical relation R
+ ↝

123

If every  is concrete:Rσ

Category of concrete relations                          
 model with maps satisfying a logical relation≈

T

̂TH ̂Tj



Summing up: logical relations

1. Logical relations can be defined via internal fibrations


2. 2-categorical perspective  a simple characterisation of definability


3.  is a model with maps satisfying some logical relation

⇒

Conc(𝔼)

(at least for STLC,  and )λml λc

124

not always obvious what this is from the start!



3: Models with every map definable
(‘full completeness’)
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What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category 
of concrete relations

take this to be Def
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What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category 
of concrete relations

take this to be Def

every map in 
 

preserves 
Conc(𝔼)

Def

⇓
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What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category 
of concrete relations

take this to be Def

every map in 
 

preserves 
Conc(𝔼)

Def

every map in 
 is 

definable
Conc(𝔼)

⇓

⇓
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What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category 
of concrete relations

take this to be Def

every map in 
 

preserves 
Conc(𝔼)

Def

every map in 
 is 

definable
Conc(𝔼)

⇓

⇓

 for  is not the same as  for !Def Conc(𝔼) Def ℳ
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The strategy
Define a category of concrete relations  
with objects  such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)
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The strategy
Define a category of concrete relations  
with objects  such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if , 
then  

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation  there exists  s.t.
{Lσ ∣ σ ∈ Type} i0

( relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type
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The strategy
Define a category of concrete relations  
with objects  such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if , 
then  

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation  there exists  s.t.
{Lσ ∣ σ ∈ Type} i0

( relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

Then  in f : [[Γ]] → H ̂Tj[[σ]] OHR(ℳ)

 is a map in  preserving every relation ⟺ f ℳ Ri
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Define a category of concrete relations  
with objects  such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if , 
then  

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation  there exists  s.t.
{Lσ ∣ σ ∈ Type} i0

( relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

Then  in f : [[Γ]] → H ̂Tj[[σ]] OHR(ℳ)

 is a map in  preserving every relation ⟺ f ℳ Ri

 is a map in  satisfying ⟹ f ℳ L

 satisfies every logical 
relation, so is definable
f

then:
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Define a category of concrete relations  
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{Lσ ∣ σ ∈ Type} i0
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for interpretation of σ) = Lσ

for all σ ∈ Type

How do we choose  and ? The intuition:I [[ − ]]

I = (set of logical relations
over OHR(ℳ) )  looks up the required relation[[ − ]],
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How do we choose  and ? The intuition:I [[ − ]]

I = (set of logical relations
over OHR(ℳ) )  looks up the required relation[[ − ]],

Circular dependencies!
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relation over  appears
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How do we choose  and ? The intuition:I [[ − ]]

I = (set of logical relations
over OHR(ℳ) )  looks up the required relation[[ − ]],

Circular dependencies!

define OHR(ℳ) choose  so every possible 
relation over  appears

I
ℳ

identify logical relations over 
 amongst relations 
over 

OHR(ℳ)
ℳ
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  Choose  as above, then construct the following category of concrete relations:I

The OHR construction

142

̂T

T

H ̂Tj

(cf. O’Hearn & Riecke)



• Categories of concrete relations are a flexible way to ‘cut down’ models


• Viewed from a general enough perspective, these restrict to                     
maps satisfying a logical relation


• Basic properties of logical relations follow from abstract nonsense


• Combining this theory  can construct fully complete models↝

Summary

Future work

• Does the ‘internal fibration’ view give the right notion in other cases?


• Can the Basic Lemma etc be phrased completely abstractly?


• Universal property for the OHR construction?
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