
14th April 2022, Tallinn

Logical relations, fibrations, and definability
Philip Saville, University of Oxford

(jww Ohad Kammar & Shin-ya Katsumata)

1

 loosely based on POPL ’21 paper↝

Motivation
restrict the maps in a semantic model
to those satisfying some propertyAim:

2

Motivation
restrict the maps in a semantic model
to those satisfying some property

starting model
model with only
maps satisfying
some predicate↝

Aim:

3

Motivation
restrict the maps in a semantic model
to those satisfying some property

System F: parametric maps
PCF: definable maps

(modulo approximation)

starting model
model with only
maps satisfying
some predicate↝

Aim:

eg

4

Motivation
restrict the maps in a semantic model
to those satisfying some property

System F: parametric maps
PCF: definable maps

(modulo approximation)

for effectful CBV languages

starting model
model with only
maps satisfying
some predicate↝

Aim:

eg

for effectful CBV languages

5

Motivation
restrict the maps in a semantic model
to those satisfying some property

System F: parametric maps
PCF: definable maps

(modulo approximation)

use fibrations, logical relations, and glueing

for effectful CBV languages

starting model
model with only
maps satisfying
some predicate↝

Aim:

eg

Strategy:

for effectful CBV languages

6

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)

2. Logical relations for effectful languages

3. Full completeness
 = building a model in which every map is definable

7

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)

2. Logical relations for effectful languages

3. Full completeness
 = building a model in which every map is definable

related to full abstraction and completeness
exact link = work in progress!

8

Three movements

1. Restricting models via fibrations (‘categories of concrete relations’)

2. Logical relations for effectful languages

3. Full completeness
conjecture extension to an

extrinsic, 2-categorical story

 = building a model in which every map is definable

+

related to full abstraction and completeness
exact link = work in progress!

9

Syntax and semantics of λml
= Moggi’s monadic metalanguage

10

Syntax of λml

types: β ∈ Base ∣ σ1 × σ2 ∣ σ → τ

terms: x ∣ ξ ∈ Prim ∣ op ∈ EfOp
∣ M N ∣ λx . M ∣ π1(M) ∣ π2(M) ∣ ⟨M, M′ ⟩ ∣ ()

= Moggi’s monadic metalanguage

11

Syntax of λml

types: β ∈ Base ∣ σ1 × σ2 ∣ σ → τ ∣ Tσ

terms: x ∣ ξ ∈ Prim ∣ op ∈ EfOp
∣ M N ∣ λx . M ∣ π1(M) ∣ π2(M) ∣ ⟨M, M′ ⟩ ∣ ()
∣ return(M) ∣ let x = N in M

= Moggi’s monadic metalanguage

12

Semantics of λml model = (ℳ, T, s)
CCC

strong monad

interpretation of
base types and

constants

13

Semantics of λml

Interpretation of types:

• as for simply-typed lambda calculus

•
s[[σ]]
s[[Tσ]] = T(s[[σ]])

model = (ℳ, T, s)
CCC

strong monad

interpretation of
base types and

constants

14

Semantics of λml

Interpretation of types:

• as for simply-typed lambda calculus

•
s[[σ]]
s[[Tσ]] = T(s[[σ]])

Interpretation of terms:

• as for simply-typed lambda calculus

•

• interpreted using monadic bind

s[[M : σ]]
s[[return(M) : Tσ]] = η ∘ s[[σ]]
s[[let…]]

model = (ℳ, T, s)
CCC

strong monad

interpretation of
base types and

constants

15

1: Concrete relations (by example)

16

a flexible method for restricting models

base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

syntax:

Example: read-only state (Set, T, s)

17

base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

base category: Set
monad: reader T(X) = (2 ⇒ X)

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

syntax:

semantics:

Example: read-only state (Set, T, s)

base types: bool
primitives: , etctt : bool, ff : bool, or : bool × bool → bool
effect operations: read : 1 → T(bool)

interpretation of base types and constants:

s(bool) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad: reader T(X) = (2 ⇒ X) s(bool) = 2 = { ⊤ , ⊥ }

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

syntax:

semantics:

Example: read-only state (Set, T, s)

interpretation of base types and constants:

, etcs(bool) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad: reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2

20

(Matache & Staton)

κ(g) = {λi . ⊤ if g(∙) = λi . ⊤
λi . ⊥ else

 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2
behaves in a way
no program can!

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad: reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF

21

(Matache & Staton)

κ(g) = {λi . ⊤ if g(∙) = λi . ⊤
λi . ⊥ else

 has too many maps(Set, T, s)

κ : (1 ⇒ T2) → T2
behaves in a way
no program can!

distinguishes contextually-equivalent programs:
∃M, M′ . (M ≃ctx M′ but [[M]](κ) ≠ [[M′]](κ))

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad: reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF

full abstraction
fails

22

(Matache & Staton)

κ(g) = {λi . ⊤ if g(∙) = λi . ⊤
λi . ⊥ else

 has too many maps(Set, T, s)

κ(g) = {λi . ⊤ if g(∙) = λi . ⊤
λi . ⊥ else

κ : (1 ⇒ T2) → T2
behaves in a way
no program can!

distinguishes contextually-equivalent programs:
∃M, M′ . (M ≃ctx M′ but [[M]](κ) ≠ [[M′]](κ))

interpretation of base types and constants:

, etcs(tt) = λx . ⊤ : 1 → 2 = s[[bool]]

s(read) = λx . λi . i : 1 → (2 ⇒ 2) = T(s[[bool]])

base category: Set
monad: reader T(X) = (2 ⇒ X) s(bool) = 2

computations of type
= set maps

σ
s[[Γ]] → (2 ⇒ s[[σ]])

cf. parallel-or for PCF

full abstraction
fails

 is a bad map: want to remove itκ
23

(Matache & Staton)

Idea: restrict to maps preserving relations
Define a category of ‘predicates’𝕃
• objects:

 with

• maps :

maps preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

24

Idea: restrict to maps preserving relations
Define a CCC of ‘predicates’𝕃 • objects:

• maps :

maps preserving the
relation

(X, R0, R1)
(X, R0, R1) → (Y, S0, S1)

f : X → Y

25

Idea: restrict to maps preserving relations
Define a CCC of ‘predicates’𝕃

• exponentials:

(X, R0, R1) ⇒ (Y, S0, S1) := (X ⇒ Y, R0 ⊃ S0, R1 ⊃ S1)

• objects:

• maps :

maps preserving the
relation

(X, R0, R1)
(X, R0, R1) → (Y, S0, S1)

f : X → Y

(f, g) ∈ (Ri ⊃ Si) ⟺ ((x, x′) Ri ⟹ (f x, g x′) ∈ Si)

26

Idea: restrict to maps preserving relations
Define a CCC of ‘predicates’𝕃

• exponentials:

• terminal object:

• products:

(X, R0, R1) ⇒ (Y, S0, S1) := (X ⇒ Y, R0 ⊃ S0, R1 ⊃ S1)
(1, ⊤ , ⊤)

(X, R0, R1) × (Y, S0, S1) = (X × Y, R0 ⋆ S0, R1 ⋆ S1)

• objects:

• maps :

maps preserving the
relation

(X, R0, R1)
(X, R0, R1) → (Y, S0, S1)

f : X → Y

(f, g) ∈ (Ri ⊃ Si) ⟺ ((x, x′) Ri ⟹ (f x, g x′) ∈ Si)
⊤ = {(∙ , ∙)}

((x1, y1), (x2, y2)) ∈ (Ri ⋆ Si) ⟺ (x1, x2) ∈ Ri and (y1, y2) ∈ Si

27

• objects:

 with

• maps :

maps preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

Idea: restrict to maps preserving relations
Define a model of ‘predicates’(𝕃, ̂T, ̂s)

28

Idea: restrict to maps preserving relations
Define a model of ‘predicates’(𝕃, ̂T, ̂s)
• objects:

 with

• maps :

maps preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• interpretation:

̂s(bool) = (2,{(0,0), (1,1)}, {(0,0), (1,1)})

29

Idea: restrict to maps preserving relations
Define a model of ‘predicates’(𝕃, ̂T, ̂s)
• objects:

 with

• maps :

maps preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• monad:

̂T(X, R0, R1) = (TX, (̂TR)0, (̂TR)1)

• interpretation:

̂s(bool) = (2,{(⊥ , ⊥), (⊤ , ⊤)}, {(⊥ , ⊥), (⊤ , ⊤)})

(h, h′) ∈ (̂TR)i ⟺ (h i, h′ i) ∈ Ri30

Idea: restrict to maps preserving relations
Define a model of ‘predicates’(𝕃, ̂T, ̂s)
• objects:

 with

• maps :

maps preserving the relation

(X, R0, R1) X ∈ Set, Ri ⊆ X2

(X, R0, R1) → (Y, S0, S1)
f : X → Y

• monad:

̂T(X, R0, R1) = (TX, (̂TR)0, (̂TR)1)

 is not a map

in

κ
κ : (1 ⇒ ̂T ̂s[[bool]]) → ̂T ̂s[[bool]]

𝕃

(h, h′) ∈ (̂TR)i ⟺ (h i, h′ i) ∈ Ri31

• interpretation:

̂s(bool) = (2,{(⊥ , ⊥), (⊤ , ⊤)}, {(⊥ , ⊥), (⊤ , ⊤)})

Idea: restrict to maps preserving relations
…have a model of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models :

preserves

ccc-structure

monads

semantic interpretation

π : 𝕃 → Set

32

̂T

T

Idea: restrict to maps preserving relations
…have a model of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models :

preserves

ccc-structure

monads

semantic interpretation

• new model refines the original one:

π : 𝕃 → Set

𝕃(̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])

33

̂T

T

Idea: restrict to maps preserving relations
…have a model of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models :

preserves

ccc-structure

monads

semantic interpretation

• new model refines the original one:

π : 𝕃 → Set

𝕃(̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])

problem: κ ∈ s[[(1 → Tbool) → Tbool]]

previous problem, internalised

⟹ κ ∈ (carrier of ̂s[[(1 → Tbool) → Tbool]])

34

Idea: restrict to maps preserving relations
…have a model of ‘predicates’ with(𝕃, ̂T, ̂s)

• morphism of models :

preserves

ccc-structure

monads

semantic interpretation

• new model refines the original one:

π : 𝕃 → Set

𝕃(̂s[[σ]], ̂s[[τ]]) ⊆ Set(s[[σ]], s[[τ]])

problem: κ ∈ s[[(1 → Tbool) → Tbool]]

previous problem, internalised

 removes from the hom-set, but not the function space𝕃 κ
can still distinguish contextually-equivalent terms!

35

⟹ κ ∈ (carrier of ̂s[[(1 → Tbool) → Tbool]])

Concreteness: removing from the function spaceκ

36

Concreteness: removing from the function spaceκ

 does not correspond to a global element:

there is no in

such that

κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ

37

Concreteness: removing from the function spaceκ

 does not correspond to a global element:

there is no in

such that

so:

κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ

restrict to objects in which every

corresponds to a global element in

(X, R0, R1) x ∈ X
𝕃

Concreteness: removing from the function spaceκ

 does not correspond to a global element:

there is no in

such that

so:

κ ∈ ̂s[[(1 → Tbool) → Tbool]]
g : 1 → ̂s[[(1 → Tbool) → Tbool]] 𝕃

g(∙) = κ

 is concrete if every in lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤) → (X, R0, R1)
x ∈ X ⟹ (x, x) ∈ Ri (i = 1,2)

restrict to objects in which every

corresponds to a global element in

(X, R0, R1) x ∈ X
𝕃

39

The subcategory of concrete objects

interpretation of etc
restricts to

bool
Conc(𝕃)

40

̂T

T

The subcategory of concrete objects

interpretation of etc
restricts to

bool
Conc(𝕃)

41

̂T

T

The subcategory of concrete objects

interpretation of etc
restricts to

bool
Conc(𝕃)

 restricts to
those such that

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands :
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

42

̂T

T

The subcategory of concrete objects

ccc by
abstract

nonsense:

monad by
abstract

nonsense

interpretation of etc
restricts to

bool
Conc(𝕃)

 restricts to
those such that

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands :
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[− ⇒ =]Conc = H(j(−) ⇒ j(=))

43

H ̂Tj ̂T

T

The subcategory of concrete objects

ccc by
abstract

nonsense:

monad by
abstract

nonsense

interpretation of etc
restricts to

bool
Conc(𝕃)

key property: [(X, …) ⇒ (Y, …)]Conc
≅ 𝕃(j(X, …), j(Y, …)) ⊆ Set(X, Y)

 restricts to
those such that

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands :
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[− ⇒ =]Conc = H(j(−) ⇒ j(=))

44

̂T

T

H ̂Tj

The subcategory of concrete objects

ccc by
abstract

nonsense:

monad by
abstract

nonsense

interpretation of etc
restricts to

bool
Conc(𝕃)

internalises the preservation condition cannot be in function space!κ

 restricts to
those such that

H (X, R0, R1)
x ∈ X

(x, x) ∈ Ri (i = 1,2)

 expands :
K (X, R0, R1)
K(X, R0, R1) = (X, R0 ∪ Δ, R1 ∪ Δ)

[− ⇒ =]Conc = H(j(−) ⇒ j(=))

45

key property: [(X, …) ⇒ (Y, …)]Conc
≅ 𝕃(j(X, …), j(Y, …)) ⊆ Set(X, Y)

̂T

T

H ̂Tj

Summing up

 in hom-sets and function spaces κ

46

T

Summing up

 in hom-sets and function spaces κ

 in function spaces κ

47

̂T

T

Summing up

 in hom-sets and function spaces κ

 in function spaces κ
 gone! κ

48

̂T

T

H ̂Tj

Abstracting away: categories of concrete relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

49

Abstracting away: categories of relations

fibration
fibration

objects: such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps: such that (f, ̂f) in ℳ × 𝔼 Ff = p(̂f)

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations

50

Abstracting away: categories of relations

fibration
fibration

objects: such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps: such that (f, ̂f) in ℳ × 𝔼 Ff = p(̂f)

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations

51

Abstracting away: categories of relations

fibration
fibration

objects: such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps: such that (f, ̂f) in ℳ × 𝔼 Ff = p(̂f)

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations

52

Abstracting away: categories of relations

subobject fibration
fibration

objects: such that (X, R) ∈ Set × Sub(Set) R ↪ X2

maps: f in Set s.t. f preserves the subobject

‘change-of-base’

(X, R) ↦ X

1. axiomatise relations by fibrations

53

eg objects: such that

maps: maps in respecting the subjects

(E, R) R ↪ E
Set

(E, R) ↦ E

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

54

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects
fibration

fibration

objects: such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps: such that (f, ̂f) in ℳ × 𝔼 Ff = p(̂f)

‘change-of-base’

(X, R) ↦ X

55

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects
fibration

fibration

objects: such that (X, R) ∈ ℳ × 𝔼 FX = pR
maps: such that (f, ̂f) in ℳ × 𝔼 Ff = p(̂f)

‘change-of-base’

(X, R) ↦ X

if , and are CCCs, strictly preserves
CCC-structure, and is cartesian, then:

𝔼 𝔹 ℳ p
F

 is a CCC, and strictly preserves
CCC-structure
𝕂 π

Fact:

56

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

57

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects eg. -lifting, free lifting, … ⊤⊤

58

Abstracting away: categories of relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

59

Abstracting away: concreteness
 is concrete if every in lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤) → (X, R0, R1)

60

Abstracting away: concreteness

 is concrete if every in
lifts to a global element in
X ∈ 𝔼 x : 1 → pX 𝔹

̂x : 1 → X 𝔼

 is concrete if every in lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤) → (X, R0, R1)

preserves 1

61

Abstracting away: concreteness

 is concrete if every in
lifts to a global element in
X ∈ 𝔼 x : 1 → pX 𝔹

̂x : 1 → X 𝔼

 is concrete if every in lifts to (X, R0, R1) x : 1 → X Set (1, ⊤ , ⊤) → (X, R0, R1)

preserves 1

62

get a subcategory Conc(𝔼) ↪ 𝔼

Categories of concrete relations (for nice enough)ℳ

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

63

T

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

CCC
monad via eg -lifting⊤⊤

64

Categories of concrete relations (for nice enough)ℳ

̂T

T

 restricts the carrierH

 expands
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤

65

Categories of concrete relations (for nice enough)ℳ

̂T

T

ccc by
abstract

nonsense:

monad by
abstract

nonsense

[X ⇒ Y]Conc = H(jX ⇒ jY)

 restricts the carrierH

 expands
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤

66

Categories of concrete relations (for nice enough)ℳ

̂T

T

H ̂Tj

ccc by
abstract

nonsense:

monad by
abstract

nonsense

[X ⇒ Y]Conc = H(jX ⇒ jY)

key property: [X ⇒ Y]Conc ≅ 𝕃(jX, jY)
internalises the preservation condition

 restricts the carrierH

 expands
the relation
K

fibration + CCC-functor

CCC

CCC

cartesian functor

CCC

monad via eg -lifting⊤⊤

67

Categories of concrete relations (for nice enough)ℳ

̂T

T

H ̂Tj

Summing up: categories of concrete relations

68

Summing up: categories of concrete relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

69

Summing up: categories of concrete relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

the induced model
restricts to maps preserving the ‘relations’

encoded by

(Conc(𝕂), H ̂Tj, ̂s)
p

70

Summing up: categories of concrete relations
idea:

1. axiomatise relations by fibrations

2. ccc-structure via structured fibrations

3. monad defined using fibration

4. restrict to concrete objects

the induced model
restricts to maps preserving the ‘relations’

encoded by

(Conc(𝕂), H ̂Tj, ̂s)
p

in fact, encodes
preservation of a
logical relation

71

2: Logical relations

72

What is a logical relation?

logical relation R

A family of relations
such that:

(1) is a relation on

(2) the family is compatible with the
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

the classical story:
Plotkin + many others

=

73

What is a logical relation?

logical relation R

A family of relations
such that:

(1) is a relation on

(2) the family is compatible with the
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

Basic Lemma (M : σ) ⟹ [[M]] ∈ Rσ

useful for relating models, or proving facts about models

the classical story:
Plotkin + many others

=

=

74

What is a logical relation?

logical relation R

A family of relations
such that:

(1) is a relation on

(2) the family is compatible with the
language’s type structure

{Rσ ∣ σ ∈ Type}

Rσ [[σ]]

Basic Lemma*

useful for relating models, or proving facts about models

the classical story:
Plotkin + many others

=

= f is definable ⟺ f 'satisfies' every logical relation

75

Logical relations for simply-typed lambda calculus
(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ

76

Logical relations for simply-typed lambda calculus

• exponentials: Rσ→τ = (Rσ ⊃ Rτ)

(f1, …, fn) ∈ (R ⊃ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ (f1 x1, …, fn xn) ∈ S)

77

Logical relations for simply-typed lambda calculus

• exponentials:

• terminal object:

Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

(f1, …, fn) ∈ (R ⊃ S)

⊤ = {(∙ , …, ∙)}

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ (f1 x1, …, fn xn) ∈ S)

78

Logical relations for simply-typed lambda calculus

• exponentials:

• terminal object:

• products:

Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

Rσ1×σ2
= Rσ1

⋆ Rσ2

(f1, …, fn) ∈ (R ⊃ S)

⊤ = {(∙ , …, ∙)}

((x1, y1), …, (xn, yn)) ∈ (R ⋆ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ (f1 x1, …, fn xn) ∈ S)

⟺ (x1, …, xn) ∈ R and (y1, …, yn) ∈ S

79

Logical relations for simply-typed lambda calculus

• exponentials:

• terminal object:

• products:

Rσ→τ = (Rσ ⊃ Rτ)
R1 = ⊤

Rσ1×σ2
= Rσ1

⋆ Rσ2

(f1, …, fn) ∈ (R ⊃ S)

⊤ = {(∙ , …, ∙)}

((x1, y1), …, (xn, yn)) ∈ (R ⋆ S)

(the classical story)

 for each type , andRσ ⊆ [[σ]]n σ
⟺ ((x1, …, xn) ∈ R ⟹ (f1 x1, …, fn xn) ∈ S)

⟺ (x1, …, xn) ∈ R and (y1, …, yn) ∈ S

what’s a principled extension to monadic structure?
80

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

81

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

82

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

83

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation

 for all
types

p(̂s[[σ]]) = s[[σ]]
σ

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

84

What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation
CCC

fibration &
strict CCC functor

cartesian functorinterpretation
induced by

s : Base → ℳ

85

What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation
CCC

fibration &
strict CCC functor

cartesian functorinterpretation
induced by

s : Base → ℳ

86

What is a logical relation? The canonical example
(Hermida, Jacobs, …)

CCC

fibration &
strict CCC functor

CCC

semantic interpretation

fibration &
strict CCC functor

cartesian functorinterpretation
induced by

s : Base → ℳ

fibration &
strict CCC

functor

objects: pairs

maps: maps preserving the relation

(X, R)CCC

87

CCC

fibration &
strict CCC functor

CCC

semantic interpretation

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation
induced by

s : Base → ℳ

objects: pairs

maps: maps preserving the relation

(X, R)CCC

What is a logical relation? The canonical example
(Hermida, Jacobs, …)

88

CCC

fibration &
strict CCC functor

CCC

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation
induced by

s : Base → ℳ

objects: pairs

maps: maps preserving the relation

(X, R)CCC

interpretation
induced by

s : Base → ℳ

What is a logical relation? The canonical example
(Hermida, Jacobs, …)

89

Some examples:

•

•

•

SNσ = {[[M]] ∣ M : σ is strongly normalising}

Eqσ(Γ) = {([[M]], [[M′]]) ∣ Γ ⊢ M ≃ M′ : σ}
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ}

note the parametrisation
by contexts

for a ‘suitable’
equational theory

Logical relations for simply-typed lambda calculus

90

Kripke relations of varying arity
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a presheaf over a category of contextsDefσ

(for a CCC)ℳ

91

Kripke relations of varying arity
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[−]], [[σ]])

(for a CCC)ℳ

92

Kripke relations of varying arity

A Kripke relation of varying arity on

is a subpresheaf

X ∈ ℳ
R ↪ ℳ([[−]], X)

Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[−]], [[σ]])

(for a CCC)ℳ

f ∈ R(Γ) and Γ ⊆ Δ ⟹ f ∘ [[wkn]] ∈ R(Δ)
R(Γ) ⊆ ℳ([[Γ]], X)

93

Kripke relations of varying arity

A Kripke relation of varying arity on

is a subpresheaf

X ∈ ℳ
R ↪ ℳ([[−]], X)

Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ} ⊆ ℳ([[Γ]], [[σ]])

[[M]] ∈ Defσ(Γ) and Γ ⊆ Δ ⟹ [[Mwkn]] ∈ Defσ(Δ)
satisfies monotonicity:

 is a sub-presheaf of Defσ ℳ([[−]], [[σ]])

(for a CCC)ℳ

f ∈ R(Γ) and Γ ⊆ Δ ⟹ f ∘ [[wkn]] ∈ R(Δ)
R(Γ) ⊆ ℳ([[Γ]], X)

94

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &
strict CCC functor

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

Basic Lemma (M : σ) ⟹ [[M]] ∈ Rσ

95

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &
strict CCC functor

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

Basic Lemma
f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼

 for some)(f = p(̂f) ̂f

96

What is a logical relation?

logical relation

(Hermida, Jacobs, …)

CCC

CCC

fibration &
strict CCC functor

semantic interpretation

semantic model
= CCCinterpretation

induced by
s : Base → ℳ

Basic Lemma
f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼

 f is definable ⟹ f satisfies R
 for some)(f = p(̂f) ̂f

Proof: f = s[[M]] ⟹ f = p(̂s[[M]])97

What is a logical relation?

logical relation
internal fibration in
2-category of CCCs

and strict CC-functors

semantic interpretation

semantic model
interpretation
induced by

s : Base → ℳ

(a 2-categorical perspective — WIP)

98

What is a logical relation?

logical relation
internal fibration in

2-category of models
and semantics-

preserving functors

semantic interpretation

semantic model
interpretation
induced by

s : Base → ℳ

(a 2-categorical perspective — WIP)

99

What is a logical relation?

logical relation
internal fibration in

2-category of models
and semantics-

preserving functors

semantic interpretation

interpretation
induced by

s : Base → ℳ

semantic model

Basic Lemma
 f is definable ⟹ f satisfies R

 for some)(f = p(̂f) ̂f

(a 2-categorical perspective — WIP)

100

̂T

T

f : s[[Γ]] → s[[σ]] satisfies R ⟺ f lifts to a map in 𝔼

internal fibration in
2-category of models

and semantics-
preserving functors

semantic interpretation

interpretation
induced by

s : Base → ℳ

semantic model

What is a logical relation for ?λml

logical relation

101

̂T

T

What is a logical relation for ?λml

logical relation
internal fibration in

2-category of models
and semantics-

preserving functors

semantic interpretation

semantic model
interpretation
induced by

s : Base → ℳ

Fibration such that

• strictly preserves cc-structure

• commutes with the monads:

p
p
p p ∘ ̂T = T ∘ p, …

logical relation

102

̂T

T

What is a logical relation for ?λml

CCC

fibration &
strict CCC functor

CCC

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation
induced by

s : Base → ℳ

objects: pairs

maps: maps preserving the relation

(X, R)CCC

interpretation
induced by

s : Base → ℳ

103

T

What is a logical relation for ?λml

CCC

fibration &
strict CCC functor

CCC

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation
induced by

s : Base → ℳ

objects: pairs

maps: maps preserving the relation

(X, R)CCC

interpretation
induced by

s : Base → ℳ

monad defined using fibration eg. -lifting, free lifting, …⊤⊤

104

̂T

T

What is a logical relation for ?λml

CCC

fibration &
strict CCC functor

CCC

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

semantic interpretation

cartesian functor

̂s[[β]] := (s[[β]], Rβ)

interpretation
induced by

s : Base → ℳ

objects: pairs

maps: maps preserving the relation

(X, R)CCC

interpretation
induced by

s : Base → ℳ

monad defined using fibration

̂s[[Tσ]] = (Ts[[σ]], ̂TRσ)

eg. -lifting, free lifting, …⊤⊤

105

̂T

T

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)

Some examples:

•

•

•

SNσ = {[[M]] ∣ M : σ is strongly normalising}

Eqσ(Γ) = {([[M]], [[M′]]) ∣ Γ ⊢ M ≃ M′ : σ}
Defσ(Γ) = {[[M]] ∣ Γ ⊢ M : σ}

note the parametrisation
by contexts

for a ‘suitable’
equational theory

̂s[[Tσ]] = (Ts[[σ]], ̂TRσ)

difficulty = choice of monad ̂T
-lifting very useful for this (cf. Lindley-Stark, biorthogonality,…)⊤⊤

106

What is a logical relation for ?λc

s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])
s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

107

What is a logical relation for ?λc

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

108

What is a logical relation for ?λc

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n

̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2)

109

What is a logical relation for ?λc

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n

̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2)

̂s[[σ]] = (s[[σ]], Rvals
σ)

110

What is a logical relation for ?λc

̂s[[σ → τ]] = (s[[σ]] ⇒ s[[τ]], Rσ ⊃ Rτ)
̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rσ1

⋆ Rσ2)
s[[σ → τ]] = s[[σ]] ⇒ T(s[[τ]])

s[[σ1 × σ2]] = s[[σ1]] × s[[σ2]]

Rvals := {(x1, …, xn) ∣ (η x1, …, η xn) ∈ R} ⊆ [[σ]]nRestrict to values:
for ,R ⊆ (T[[σ]])n

̂s[[σ → τ]] = (s[[σ]] ⇒ Ts[[τ]], Rvals
σ ⊃ Rτ)

̂s[[σ1 × σ2]] = (s[[σ1]] × s[[σ2]], Rvals
σ1

⋆ Rvals
σ2)

̂T(s[[σ]], Rvals
σ) = (Ts[[σ]], Rσ)

̂s[[σ]] = (s[[σ]], Rvals
σ)

T ̂s[[σ]] = (Ts[[σ]], Rσ)
111

Converse to the Basic Lemma
Every morphism of models defines a logical relation:

112

T

S

Every morphism of models defines a logical relation:

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

113

Converse to the Basic Lemma

T

S

Every morphism of models defines a logical relation:

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤

114

Converse to the Basic Lemma

T

S ̂T

Every morphism of models defines a logical relation:

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

take the subcategory of with:

• objects:

• maps: definable maps

 is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

monad given by -lifting⊤⊤

115

Converse to the Basic Lemma

T

S ̂T

Every morphism of models defines a hungry logical relation:

•

•

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ) take the subcategory of with:

• objects:

• maps: definable maps

 is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

116

Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤

T

S ̂T

Every morphism of models defines a hungry logical relation:

•

•

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ)

take the subcategory of with:

• objects:

• maps: definable maps

 is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

f : [[σ]] → [[τ]] satisfies Def ⟹ f is definable

117

Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤

T

S ̂T

Every morphism of models defines a hungry logical relation:

•

•

ℱσ(Γ) := {Fh ∣ h ∈ 𝒞(c[[Γ]], c[[σ]])}
f : [[σ]] → [[τ]] satisfies ℱ ⟹ f ∈ ℱτ(x : σ)

take the subcategory of with:

• objects:

• maps: definable maps

 is logical

𝒞 ℳ
s[[σ]] for σ ∈ Type

⇒ Def

f : [[σ]] → [[τ]] satisfies Def ⟹ f is definable

 satisfies every
logical relation is definable

f : [[σ]] → [[τ]]
⟺ f

Converse to the Basic Lemma

σ ↦ (s[[σ]], ℱσ)

C ↦ (FC, ℱC)

cf. the Identity Extension Lemma

monad given by -lifting⊤⊤

T

S ̂T

Logical relations and categories of concrete relations

119

Logical relations and categories of concrete relations

120

T

̂TH ̂Tj

Logical relations and categories of concrete relations

121

T

̂TH ̂Tj

Logical relations and categories of concrete relations
Category of concrete relations

 model with maps satisfying a logical relation≈

122

T

̂TH ̂Tj

Logical relations and categories of concrete relations

model of
maps satisfying

Conc(𝔼)
R

model ℳ

logical relation R
+ ↝

123

If every is concrete:Rσ

Category of concrete relations
 model with maps satisfying a logical relation≈

T

̂TH ̂Tj

Summing up: logical relations

1. Logical relations can be defined via internal fibrations

2. 2-categorical perspective a simple characterisation of definability

3. is a model with maps satisfying some logical relation

⇒

Conc(𝔼)

(at least for STLC, and)λml λc

124

not always obvious what this is from the start!

3: Models with every map definable
(‘full completeness’)

125

What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category
of concrete relations

take this to be Def

126

T

̂TH ̂Tj

What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category
of concrete relations

take this to be Def

every map in

preserves
Conc(𝔼)

Def

⇓

127

T

̂TH ̂Tj

What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category
of concrete relations

take this to be Def

every map in

preserves
Conc(𝔼)

Def

every map in
 is

definable
Conc(𝔼)

⇓

⇓

128

T

̂TH ̂Tj

What doesn’t work
Logical relations and categories of concrete relations

Every logical relation determines a category
of concrete relations

take this to be Def

every map in

preserves
Conc(𝔼)

Def

every map in
 is

definable
Conc(𝔼)

⇓

⇓

 for is not the same as for !Def Conc(𝔼) Def ℳ
129

T

̂TH ̂Tj

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

130

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if ,
then

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation there exists s.t.
{Lσ ∣ σ ∈ Type} i0

(relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

131

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if ,
then

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation there exists s.t.
{Lσ ∣ σ ∈ Type} i0

(relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

Then in f : [[Γ]] → H ̂Tj[[σ]] OHR(ℳ)

 is a map in preserving every relation ⟺ f ℳ Ri

132

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if ,
then

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation there exists s.t.
{Lσ ∣ σ ∈ Type} i0

(relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

Then in f : [[Γ]] → H ̂Tj[[σ]] OHR(ℳ)

 is a map in preserving every relation ⟺ f ℳ Ri

 is a map in satisfying ⟹ f ℳ L
133

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

ie if ,
then

[[σ]] = (…, {Rσ
i ∣ i ∈ I})

Rσ
i0 = Lσ

for any logical relation there exists s.t.
{Lσ ∣ σ ∈ Type} i0

(relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

Then in f : [[Γ]] → H ̂Tj[[σ]] OHR(ℳ)

 is a map in preserving every relation ⟺ f ℳ Ri

 is a map in satisfying ⟹ f ℳ L

 satisfies every logical
relation, so is definable
f

then:

134

The strategy
Define a category of concrete relations
with objects such that

OHR(ℳ)
(X, {Ri ∣ i ∈ I})

(cf. O’Hearn & Riecke)

for any logical relation there exists s.t.
{Lσ ∣ σ ∈ Type} i0

(relation at index i0
for interpretation of σ) = Lσ

for all σ ∈ Type

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

135

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ)

136

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ) choose so every logical
relation over appears

I
OHR(ℳ)

137

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ) choose so every logical
relation over appears

I
OHR(ℳ)

define logical relation
over OHR(ℳ)

138

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ) choose so every logical
relation over appears

I
OHR(ℳ)

define logical relation
over OHR(ℳ)

139

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ) choose so every possible
relation over appears

I
ℳ

140

How do we choose and ? The intuition:I [[−]]

I = (set of logical relations
over OHR(ℳ)) looks up the required relation[[−]],

Circular dependencies!

define OHR(ℳ) choose so every possible
relation over appears

I
ℳ

identify logical relations over
 amongst relations
over

OHR(ℳ)
ℳ

141

 Choose as above, then construct the following category of concrete relations:I

The OHR construction

142

̂T

T

H ̂Tj

(cf. O’Hearn & Riecke)

• Categories of concrete relations are a flexible way to ‘cut down’ models

• Viewed from a general enough perspective, these restrict to
maps satisfying a logical relation

• Basic properties of logical relations follow from abstract nonsense

• Combining this theory can construct fully complete models↝

Summary

Future work

• Does the ‘internal fibration’ view give the right notion in other cases?

• Can the Basic Lemma etc be phrased completely abstractly?

• Universal property for the OHR construction?

• Categories of concrete relations are a flexible way to ‘cut down’ models

• Viewed from a general enough perspective, these restrict to
maps satisfying a logical relation

• Basic properties of logical relations follow from abstract nonsense

• Combining this theory can construct fully complete models↝

Summary

Future work

• Does the ‘internal fibration’ view give the right notion in other cases?

• Can the Basic Lemma etc be phrased completely abstractly?

• Universal property for the OHR construction?

